ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (9)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 93 (1999), S. 133-154 
    ISSN: 1573-1472
    Keywords: Boundary layer ; Heterogeneous terrain ; Momentum transport ; Effective roughness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We develop a parameterisation for the effective roughness length of terrain that consists of a repeating sequence of patches, in which each patch is composed of strips of two roughness types. A numerical model with second-order closure in the turbulent stress is developed and used to show that: (i) the normalised Reynolds stress develops as a self-similar profile; (ii) the mixing-length parameterisation is a good first-order approximation to the Reynolds stress. These findings are used to characterise the blending layer, where the stress adjusts smoothly from its local surface value to its ‘effective’ value aloft. Previous studies have assumed that this adjustment occurs abruptly at a single level, often called the blending height. The blending layer is shown to be characterised by height scales that arise naturally in linear models of surface layer flow over roughness changes, and calculations with the numerical model show that these height scales remain appropriate in the nonlinear regime. This concept of the blending layer allows the development of a new parameterisation of the effective roughness length, which gives values for the effective roughness length that are shown to compare well with both atmospheric measurements and values determined from the second-order model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-10-01
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-01-01
    Print ISSN: 0066-4189
    Electronic ISSN: 1545-4479
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-10-01
    Print ISSN: 0043-1656
    Electronic ISSN: 1477-8696
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-11-01
    Print ISSN: 0043-1656
    Electronic ISSN: 1477-8696
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-05-10
    Description: We divide the interaction between wind and ocean surface waves into three parameter regimes, namely slow, intermediate and fast waves, that are distinguished by the ratio c/u. (c is the wave phase speed and u. is the friction velocity in the wind). We develop here an analytical model for linear changes to the turbulent air flow caused by waves of small slope that is applicable to slow and to fast waves. The wave-induced turbulent shear stress is parameterized here with a damped mixing-length model, which tends to the mixing-length model in an inner region that lies dose to the surface, and is then damped exponentially to zero in an outer region that lies above the inner region. An adjustable parameter in the damped mixing-length model controls the rate of decay of the wave-induced stress above the inner region, and shows bow the results van from a model with no damping, which corresponds to using the mixing-length model throughout the flow, to a model with full damping, which, following previous suggestions, correctly represents rapid distortion of the wave-induced turbulence in the outer region. Solutions for air flow over fast waves are obtained by analysing the displacement of streamlines over the wave: they show that fast waves are damped, thereby giving their energy up to the wind. There is a contribution to this damping from a counterpart of the non-separated sheltering mechanism that gives rise to growth of slow waves (Belcher & Hunt 1993). This sheltering contribution is smaller than a contribution from the wave-induced surface stress working against the orbital motions in the water. Solutions from the analysis for both slow and fast waves are in excellent agreement with values computed by Mastenbroek (1996) from the nonlinear equations of motion with a full second-order closure model for the turbulent stresses. Comparisons with data for slow and intermediate waves show that the results agree well with laboratory measurements over wind-ruffled paddle-generated waves, but give results that are a factor of about two smaller than measurements of purely wind-generated waves. We know of no data for fast waves with which to compare the model. The damping rates we find for fast waves lead to e-folding times for the decay of the waves that are a day or longer. Although this wind-induced damping of fast waves is small, we suggest that it might control low-frequency waves in a fully-developed sea.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-10-10
    Description: We develop a theoretical analysis of the displacement of inviscid fluid particles and material surfaces caused by the unsteady flow around a solid body that is moving away from a wall. The body starts at position hs from the wall, and the material surface is initially parallel to the wall and at distance hL from it. A volume of fluid Df+ is displaced away from the wall and a volume Df- towards the wall. Df+ and Df- are found to be sensitive to the ratio hL/hS. The results of our specific calculations for a sphere can be extended in general to other shapes of bodies. When the sphere moves perpendicular to the wall the fluid displacement and drift volume Df+ are calculated numerically by computing the flow around the sphere. These numerical results are compared with analytical expressions calculated by approximating the flow around the sphere as a dipole moving away from the wall. The two methods agree well because displacement is an integrated effect of the fluid flow and the largest contribution to displacement is produced when the sphere is more than two radii away from the wall, i.e. when the dipole approximation adequately describes the flow. Analytic expressions for fluid displacement are used to calculate Df+ when the sphere moves at an acute angle α away from the wall. In general the presence of the wall reduces the volume displaced forward and this effect is still significant when the sphere starts 100 radii from the wall. A sphere travelling perpendicular to the wall, α = 0, displaces forward a volume Df+(0) = 4πa3hL/33/2hs when the marked surface starts downstream, or behind the sphere, and displaces a volume Df+(0) ~ 2πa3/3 forward when it is marked upstream or in front of the body. A sphere travelling at an acute angle away from the wall displaces a volume Df+(α) ~ Df+(0)cos α forward when the surface starts downstream of the sphere. When the marked surface is initially upstream of the sphere, there are two separate regions displaced forward and a simple cosine dependence on α is not found. These results can all be generalized to calculate material surfaces when the sphere moves at variable speed, displacements no longer being expressed in terms of time, but in relation to the distance travelled by the sphere.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-07-10
    Description: When scaled properly, the high-wavenumber and high-frequency parts of wind-wave spectra collapse onto universal curves. This collapse has been attributed to a dynamical balance and so these parts of the spectra have been called the equilibrium range. We develop a model for this equilibrium range based on kinematical and dynamical properties of breaking waves. Data suggest that breaking waves have high curvature at their crests, and they are modelled here as waves with discontinuous slope at their crests. Spectra are then dominated by these singularities in slope. The equilibrium range is assumed to be scale invariant, meaning that there is no privileged lengthscale. This assumption implies that: (i) the sharp-crested breaking waves have self-similar shapes, so that large breaking waves are magnified copies of the smaller breaking waves; and (ii) statistical properties of breaking waves, such as the average total length of breaking-wave fronts of a given scale, vary with the scale of the breaking waves as a power law, parameterized here with exponent D. The two-dimensional wavenumber spectrum of a scale-invariant distribution of such self-similar breaking waves is calculated and found to vary as ψ(k) ∼ k-5+D. The exponent D is calculated by assuming a scale-invariant dynamical balance in the equilibrium range. This balance is satisfied only when D = 1, so that ψ(k) ∼ k-4, in agreement with recent data. The frequency spectrum is also calculated and shown to vary as Φ(σ) ∼ σ-4, which is also in good agreement with data. The theory also gives statistics for the coverage of the sea surface with breaking waves, and, when D = 1, the fraction of sea surface covered by breaking waves is the same for all scales. Hence the equilibrium described by our model is a space-filling saturation: equilibrium at a given wavenumber is established when breaking waves of the corresponding scale cover a given, wind-dependent, fraction of the sea surface. Although both ψ (k) and Φ(σ) vary with the same power law, the two power laws arise from quite different physical causes. As the wavenumber, k, increases, ψ(k) receives contributions from smaller and smaller breaking waves. In contrast, Φ(σ) is dominated by the largest breaking waves through the whole of the equilibrium range and contains no information about the small-scale waves. This deduction from the model suggests a way of using data to distinguish the present theory from previous work.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-02-10
    Description: We develop a numerical model of the interaction between wind and a small-amplitude water wave. The model first calculates the turbulent flows in both the air and water that would be obtained with a flat interface, and then calculates linear perturbations to this base flow caused by a travelling surface wave. Turbulent stresses in the base flow are parameterized using an eddy viscosity derived from a low-turbulent-Reynolds-number k -ε model. Turbulent stresses in the perturbed flow are parameterized using a new damped eddy viscosity model, in which the eddy viscosity model is used only in inner regions, and is damped exponentially to zero outside these inner regions. This approach is consistent with previously developed physical scaling arguments. Even on the ocean the interface can be aerodynamically smooth, transitional or rough, so the new model parameterizes the interface with a roughness Reynolds number and retains effects of molecular stresses (on both mean and turbulent parts of the flow). The damped eddy viscosity model has a free constant that is calibrated by comparing with results from a second-order closure model. The new model is then used to calculate the variation of form drag on a stationary rigid wave with Reynolds number, R. The form drag increases by a factor of almost two as R drops from 2 ×104 to 2 × 103 and shows remarkably good agreement with the value measured by Zilker & Hanratty (1979). These calculations show that the damped eddy viscosity model captures the physical processes that produce the asymmetric pressure that leads to form drag and also wave growth. Results from the numerical model show reasonable agreement with profiles measured over travelling water waves by Hsu Hsu (1983), particularly for slower moving waves. The model suggests that the wave-induced flow in the water is irrotational except in an extremely thin interface layer, where viscous stresses are as likely to be important as turbulent stresses. Thus our study reinforces previous suggestions that the region very close to the interface is crucial to wind-wave interaction and shows that scales down to the viscous length may have an order-one effect on the development of the wave. The energy budget and growth rate of the wave motions, including effects of the sheared current and Reynolds number, will be examined in a subsequent paper.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...