Skip to main content
Log in

On the Parameterisation of the Effective Roughness Length for Momentum Transfer over Heterogeneous Terrain

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We develop a parameterisation for the effective roughness length of terrain that consists of a repeating sequence of patches, in which each patch is composed of strips of two roughness types. A numerical model with second-order closure in the turbulent stress is developed and used to show that: (i) the normalised Reynolds stress develops as a self-similar profile; (ii) the mixing-length parameterisation is a good first-order approximation to the Reynolds stress. These findings are used to characterise the blending layer, where the stress adjusts smoothly from its local surface value to its ‘effective’ value aloft. Previous studies have assumed that this adjustment occurs abruptly at a single level, often called the blending height. The blending layer is shown to be characterised by height scales that arise naturally in linear models of surface layer flow over roughness changes, and calculations with the numerical model show that these height scales remain appropriate in the nonlinear regime. This concept of the blending layer allows the development of a new parameterisation of the effective roughness length, which gives values for the effective roughness length that are shown to compare well with both atmospheric measurements and values determined from the second-order model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belcher, S. E., Xu, D. P., and Hunt, J. C. R.: 1990, ‘The Response of a Turbulent Boundary Layer to Arbitrarily Distributed Two-Dimensional Roughness Changes’, Quart. J. Roy. Meteorol. Soc. 116, 611-635.

    Google Scholar 

  • Belcher, S. E., Newley, T. M. J., and Hunt, J. C. R.: 1993, ‘The Drag on an Undulating Surface Induced by the Flow of a Turbulent Boundary Layer’, J. Fluid Mech. 249, 557-596.

    Google Scholar 

  • Bradley, E. F.: 1968, ‘A Micrometeorological Study of Velocity Profiles and Surface Drag in the Region Modified by a Change in Surface Roughness’, Quart. J. Roy. Meteorol. Soc. 94, 361-379.

    Google Scholar 

  • Brutsaert, W. H.: 1982, Evaporation into the Atmosphere — Theory, History and Applications, Reidel, Dordrecht, 299 pp.

    Google Scholar 

  • Claussen, M.: 1987, ‘The Flow in a Turbulent Boundary Layer Upstream of a Change in Surface Roughness’, Boundary-Layer Meteorol. 40, 31-86.

    Google Scholar 

  • Claussen, M.: 1990, ‘Area-Averaging of Surface Fluxes in a Neutrally Stratified, Horizontally Inhomogeneous Atmospheric Boundary Layer’, Atmos. Environ. 24A, 1349-1360.

    Google Scholar 

  • Dufort, E. C. and Frankel, S. P.: 1953, Math. Tables Aid Comput. 7, 135-152.

    Google Scholar 

  • Fiedler, F. and Panofsky, H. A.: 1972, ‘The Geostrophic Drag Coefficient and the “Effective” Roughness Length’, Quart. J. Roy. Meteorol. Soc. 98, 213-221.

    Google Scholar 

  • Garratt, J. R.: 1994, The Atmospheric Boundary Layer, Cambridge University Press, U.K., 316 pp.

    Google Scholar 

  • Goode, K.: 1997, Modelling Surface-Layer Flow over Heterogeneous Terrain, Ph.D. Thesis, University of Reading.

  • Hobson, J. M, Wood, N., and Brown, A. R.: 1999, ‘Large-Eddy Simulations of Neutrally-Stratified Flow over Surfaces with Spatially Varying Roughness Length’, Quart. J. Roy. Meteorol. Soc., in press.

  • Hogstrom, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation’, Boundary-Layer Meteorol. 42, 55-78.

    Google Scholar 

  • Hopwood, W. P.: 1995, ‘Surface Transfer of Heat and Momentum over an Inhomogeneous Vegetated Land Surface’, Quart. J. Roy. Meteorol. Soc. 121, 1549-1574.

    Google Scholar 

  • Huang, C. H. and Nickerson, E. C.: 1974, ‘Stratified Flow over Non-Uniform Surface Conditions: Mixing Length Model’, Boundary-Layer Meteorol. 5, 395-417.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, U.K., 289 pp.

    Google Scholar 

  • Lewellen, W. S. and Teske, M.: 1973, ‘Prediction of the Monin-Obukov Similarity Functions from an Invariant Model of Turbulence’, J. Atmos. Sci. 30, 1340-1345.

    Google Scholar 

  • Mahrt, L.: 1996, ‘The Bulk Aerodynamic Formulation over Heterogeneous Surfaces’, Boundary-Layer Meteorol. 78, 87-119.

    Google Scholar 

  • Mason, P. J.: 1988, ‘The Formation of Areally-Averaged Roughness Lengths’, Quart. J. Roy. Meteorol. Soc. 114, 399-420.

    Google Scholar 

  • Panofsky, H. A. and Townsend, A. A: 1964, ‘Change of Terrain Roughness and the Wind Profile’, Quart. J. Roy. Meteorol. Soc. 98, 845-854.

    Google Scholar 

  • Rao, K. S., Wyngaard, J. C., and Cote, O. R.: 1974, ‘The Structure of the Two-Dimensional Internal Boundary Layer over a Sudden Change of Surface Roughness’, J. Atmos. Sci. 31, 738-746.

    Google Scholar 

  • Raupach, M. R., Coppin, P. A., and Legg, B. J.: 1986, ‘Experiments on Scalar Dispersion within a Model Plant Canopy Part I. The Turbulence Structure’, Boundary-Layer Meteorol. 35, 21-52.

    Google Scholar 

  • Rotta, J. C.: 1951, ‘Statistische Theorie Nichthomogener Turbulenz’, Z. Phys. 129, 547-572; 131, 51–77.

    Google Scholar 

  • Schmid, H. P. and Bunzli, B.: 1995, ‘The Influence of Surface Texture on the Effective Roughness Length’, Quart. J. Roy. Meteorol. Soc. 121, 1-21.

    Google Scholar 

  • Smith, F. B. and Carson, D. J.: 1977, ‘Some Thoughts on the Specification of the Boundary Layer Relevant to Numerical Modelling’, Boundary-Layer Meteorol. 12, 307-330.

    Google Scholar 

  • Taylor, P. A.: 1969, ‘On Wind and Shear Stress Profiles above a Change in Surface Roughness’, Quart. J. Roy. Meteorol. Soc. 95, 77-91.

    Google Scholar 

  • Taylor, P. A.: 1987, ‘Comments and Further Analysis on the Effective Roughness Length for Use in Numerical Three Dimensional Models’, Boundary-Layer Meteorol. 39, 403-419.

    Google Scholar 

  • Weiringa, J.: 1986, ‘Roughness-Dependent Geographical Interpolation of Surface Wind Speed Averages’, Quart. J. Roy. Meteorol. Soc. 112, 867-889.

    Google Scholar 

  • Wood, D. H.: 1982, ‘Internal Boundary Layer Growth Following a Step Change in Surface Roughness’, Boundary-Layer Meteorol. 22, 241-244.

    Google Scholar 

  • Wood, N. and Mason, P.: 1991, ‘The Influence of Static Stability on the Effective Roughness Lengths for Momentum and Heat Transfer’, Quart. J. Roy. Meteorol. Soc. 117, 1025-1056.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goode, K., Belcher, S.E. On the Parameterisation of the Effective Roughness Length for Momentum Transfer over Heterogeneous Terrain. Boundary-Layer Meteorology 93, 133–154 (1999). https://doi.org/10.1023/A:1002035509882

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002035509882

Navigation