ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-05-21
    Description: Bile acids regulate the transcription of genes that control cholesterol homeostasis through molecular mechanisms that are poorly understood. Physiological concentrations of free and conjugated chenodeoxycholic acid, lithocholic acid, and deoxycholic acid activated the farnesoid X receptor (FXR; NR1H4), an orphan nuclear receptor. As ligands, these bile acids and their conjugates modulated interaction of FXR with a peptide derived from steroid receptor coactivator 1. These results provide evidence for a nuclear bile acid signaling pathway that may regulate cholesterol homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parks, D J -- Blanchard, S G -- Bledsoe, R K -- Chandra, G -- Consler, T G -- Kliewer, S A -- Stimmel, J B -- Willson, T M -- Zavacki, A M -- Moore, D D -- Lehmann, J M -- F32 DK09793/DK/NIDDK NIH HHS/ -- R01 DK53366/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1365-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biochemistry, Glaxo Wellcome Research and Development, Research Triangle Park NC, 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/chemistry/*metabolism/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism/pharmacology ; Cholesterol/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Deoxycholic Acid/metabolism/pharmacology ; Histone Acetyltransferases ; Homeostasis ; Humans ; Ligands ; Lithocholic Acid/metabolism/pharmacology ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Structure-Activity Relationship ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-07-31
    Description: Treatment-resistant Lyme arthritis is associated with immune reactivity to outer surface protein A (OspA) of Borrelia burgdorferi, the agent of Lyme disease, and the major histocompatibility complex class II allele DRB1*0401. The immunodominant epitope of OspA for T helper cells was identified. A homology search revealed a peptide from human leukocyte function-associated antigen-1 (hLFA-1) as a candidate autoantigen. Individuals with treatment-resistant Lyme arthritis, but not other forms of arthritis, generated responses to OspA, hLFA-1, and their highly related peptide epitopes. Identification of the initiating bacterial antigen and a cross-reactive autoantigen may provide a model for development of autoimmune disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gross, D M -- Forsthuber, T -- Tary-Lehmann, M -- Etling, C -- Ito, K -- Nagy, Z A -- Field, J A -- Steere, A C -- Huber, B T -- R01 AR20358/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jul 31;281(5377):703-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Tufts University, Boston, MA 02111 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9685265" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Algorithms ; Amino Acid Sequence ; Animals ; Antigen Presentation ; Antigens, Surface/immunology/metabolism ; Arthritis, Reactive/drug therapy/*immunology ; Autoantigens/*immunology ; Autoimmune Diseases/*immunology ; Bacterial Outer Membrane Proteins/immunology/metabolism ; Bacterial Vaccines ; Borrelia burgdorferi Group/immunology ; Child ; Cross Reactions ; Female ; HLA-DR Antigens/genetics/immunology/metabolism ; HLA-DRB1 Chains ; Humans ; Immunodominant Epitopes ; *Lipoproteins ; Lyme Disease/drug therapy/*immunology ; Lymphocyte Function-Associated Antigen-1/chemistry/*immunology/metabolism ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Synovial Fluid/immunology ; T-Lymphocytes, Helper-Inducer/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-22
    Description: The neonatal period has been thought of as a window in ontogeny, during which the developing immune system is particularly susceptible to tolerization. In the present study, the classic system for induction of neonatal tolerance to protein antigens was reexamined in mice. The presumably tolerogenic protocol was found to trigger a vigorous T helper cell type 2 (TH2) immune response. Thus, neonatal "tolerization" induces immune deviation, not tolerance in the immunological sense. Neonates are not immune privileged but generate TH2 or TH1 responses, depending on the mode of immunization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forsthuber, T -- Yip, H C -- Lehmann, P V -- AI36219-02/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Mar 22;271(5256):1728-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Case Western Reserve University, Cleveland, OH 44106-4943, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596934" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn/*immunology ; Antibody Formation ; Freund's Adjuvant ; *Immune Tolerance ; Immunization ; Immunoglobulin G/biosynthesis ; Immunologic Memory ; Lymph Nodes/immunology ; Mice ; Mice, Inbred BALB C ; Muramidase/immunology ; Spleen/immunology ; Th1 Cells/*immunology ; Th2 Cells/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...