ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (5)
  • Wiley-Blackwell  (5)
  • 1995-1999  (5)
  • 1
    ISSN: 0730-2312
    Keywords: redox ; HgCl2 ; tyrosine phosphorylation ; p56lck ; signal complex ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Previously we showed that a thiol-reactive heavy metal, HgCl2, crosslinked multiple cell surface receptors through a ligand-independent pathway, which produced massive aggregates of phosphotyrosine (PTYR)-containing proteins beneath plasma membrane [Nakashima et al. (1994): J Immunol 152:1064-1071]. In this study we characterized these unique aggregates at the molecular level. The lysates in Brij 96 of thymocytes treated with HgCl2 were separated into the supernatant and pellet fractions by simple centrifugation. Selected PTYR-containing proteins and p56lck appeared in the pellet fraction as quickly as 5 s after exposure to HgCl2, and were further increased in amount by 5 min. Although the mechanism of triggering these events was redox-linked, the majority of proteins in the Brij 96-insoluble aggregates were dissociated in SDS-PAGE under nonreducing condition. This suggested that PTYR-containing proteins and p56lck themselves do not form dimer or polymer directly by thiol-mediated bond. The pellet fraction was further found to include some other signal delivery elements, such as GTPase activating protein, phosphatidylinositol 3 kinase, and mitogen-activated protein kinase. Finally, all of these signal elements and selected PTYR-containing proteins were collected in the same fraction by the sucrose density gradient centrifugation. These results suggest a unique redox-linked pathway of formation of a giant signal complex.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: nerve growth factor ; fibroblast growth factor ; K-252a ; staurosporine ; p140trk ; receptor ; signal transduction ; tyrosine kinase ; transfection ; overexpression ; PC12/endothelial hybrid cells ; DNA synthesis ; proliferation ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Nerve growth factor (NGF) regulates proliferation, differentiation, and survival of sympathetic and sensory neurons through the tyrosine kinase activity of its receptor, p140trk. These biological effects of NGF depend upon the signal-mediating function of p140trk substrates which are likely to differ from cell to cell. To define p140trk receptor substrates and the details of signalling by NGF in the hybrid cell PC12EN, we stably transfected cultures with a vector encoding a full-length human p140trk cDNA sequence. Two stably transfected clones, one expressing p140trk with higher affinity (PC12EN-trk3; Kd 57.4 pM, Bmax 9.7 pmole/mg) and one expressing p140trk with a lower affinity (PC12EN-trk1; Kd 392.4 pM, Bmax 5.7 pmole/mg) were generated. Radioreceptor assays indicate that transfected p140trk receptors show slow NGF-dissociation kinetics, are resistant to trypsin or Triton X-100 treatment, are specific for NGF compared to other neurotrophins, and are internalized or downregulated as are native PC12 p140trk receptors. NGF stimulates p140trk tyrosine phosphorylation in a dose- (0.01-10 ng/ml) and time- (5-120 min) dependent manner, and tyrosine phosphorylation was inhibited by 200-1,000 nM K-252a. NGF-induced Erk stimulation for 60 min was assessed using myelin basic protein as a substrate. NGF treatment also led to an increased phosphorylation of p70S6k, SNT, and phospholipase Cγ, demonstrating that the major NGF-stimulated signalling pathways found in other cells are activated in PC12EN-trk cells. Staurosporine (5-50 nM) rapidly and dBcAMP (1 mM) more slowly, but not NGF induced morphological differentiation in PC12EN-trk cells. Rather, NGF treatment in low-serum medium stimulated a 1.3- and 2.3-fold increase in DNA synthesis measured by [3H]thymidine incorporation in PC12EN-trk1 and PC12EN-trk3, respectively. These data highlight the functionality of the transfected p140trk receptors and indicate that these transfected cells may serve as a novel cellular model facilitating the study of the mitogenic properties of NGF signalling and the transducing role of the p140trk receptor substrates. J. Cell. Biochem. 66:229-244. © 1997 Wiley-Liss, Inc. This article is a U.S. Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 433-441 
    ISSN: 0730-2312
    Keywords: AKT2 ; serine-threonine kinase ; oncogene ; insulin ; phosphatidylinositol 3-kinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The AKT2 oncogene encodes a protein-serine/threonine kinase that was recently shown to be activated by a variety of growth factors. In addition, we previously showed that AKT2 is abundant in brown fat and skeletal muscle, tissues that are highly insulin responsive and that play a role in glucose metabolism. In this study, we demonstrate that AKT2 is activated in response to stimulation by insulin in a dose- and time-dependent manner in human ovarian carcinoma cells and that activation of AKT2 is abolished in cells pretreated with wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase). Activation of AKT2 is manifested by changes in its phosphorylation state. Immunofluorescence experiments demonstrate that AKT2 is translocated to the plasma membrane after insulin stimulation, and this translocation is abolished by wortmannin. Both wild-type AKT2 activated by insulin and constitutively active AKT2, which has been targeted to the membrane by the addition of a myristoylation signal, were found to inactivate glycogen synthase kinase-3 (GSK-3) in vitro. GSK-3 was not inactivated by a catalytically inactive AKT2 mutant. Collectively, these data indicate that activation of AKT2 by insulin is mediated by PI 3-kinase and that GSK-3 is a downstream target of AKT2, suggesting a potentially important role of AKT2 in glycogen synthesis and other GSK-3 signaling pathways. J. Cell. Biochem. 70:433-441, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 162 (1995), S. 315-321 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Various osteoblastic cell lines were examined for the relationship between the presence of cell-surface transforming growth factor (TGF)-β receptors and the synthesis of matrix proteins with their responsiveness to TGF-β. Treatment with TGF-β1 inhibited proliferation and stimulated proteoglycan and fibronectin synthesis in MC3T3-E1 and MG 63 cells. The major proteoglycans synthesized by these cells were decorin and biglycan, and TGF-β1 markedly stimulated the synthesis of decorin in MC3T3-E1 and of biglycan in MG 63 cells. SaOS 2 and UMR 106 cells synthesized barely detectable amounts of decorin or biglycan, and TGF-β1 did not stimulate the synthesis of these proteoglycans. In SaOS 2 cells, however, TGF-β1 enhanced fibronectin synthesis. TGF-β1 did not show any of these effects in UMR 106 cells. Receptor cross-linking studies revealed that only MC3T3-E1 and MG 63 cells had both types I and II signal-transducing receptors for TGF-β in addition to betaglycan. SaOS 2 cells possessed type I but no type II receptor on the cell surface. In contrast, SaOS 2 as well as MC3T3-E1 and MG 63 cells expressed type II receptor mRNA by Northern blot analysis, and cell lysates contained type II receptor by Western blot analysis. Thus, it appears that type II receptor present in SaOS 2 cells is not able to bind TGF-β1 under these conditions. UMR 106 cells with no response to TGF-β1 had neither of the signal-transducing receptors by any of the analyses. These observations using clonal osteoblastic cell lines demonstrate that the ability of osteoblastic cells to synthesize bone matrix proteoglycans is associated with the responsiveness of these cells to TGF-β1, that the responsiveness of osteoblastic cells to TGF-β1 in cell proliferation and proteoglycan synthesis correlates with the presence of both types I and II receptors, and that the effect of TGF-β1 on fibronectin synthesis can develop with little binding of TGF-β1 to type II receptor if type I receptor is present. It is suggested that the combination of cell-surface receptors for TGF-β determines the responsiveness of osteoblastic cells to TGF-β and that changes in cell-surface TGF-β receptors may play a role in the regulation of matrix protein synthesis and bone formation in osteoblasts. © 1995 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; long and accurate (LA)-PCR ; homologous recombination ; co-transformation ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: A DNA fragment longer than 10 kb can be amplified by the long and accurate polymerase chain reaction (LA-PCR) method. We demonstrate here applications of this technique in molecular biological studies of Saccharomyces cerevisiae. We have shown that DNA fragments amplified by LA-PCR can be directly used as a template in the chain-termination sequencing protocol, making it possible to quickly identify the DNA insert of yeast genomic library clones. We have also shown that the amplified yeast DNA can easily be introduced into yeast by co-transformation with linearized vector DNA. Overlapping DNA between the amplified yeast fragment and the vector must be more than 20 bp long in order to obtain 90% or more correct recombinant plasmids. These results suggest that simple amplification of yeast clones by LA-PCR can replace the previous procedures of yeast clone recovery, consisting of transformation of Escherichia coli, propagation of plasmids in E. coli and preparation of plasmid DNA. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...