ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • FLUID MECHANICS AND HEAT TRANSFER
  • 1995-1999  (36)
  • 1980-1984  (259)
  • 1
    Publication Date: 2019-06-28
    Description: (Previously cited in issue 06, p. 860, Accession no. A82-17824)
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Six flowfield configurations are investigated with sidewall angles of 90 and 45 deg, and swirl vane angles of 0, 45, and 70 deg. It is found that central recirculation zones occur for the swirling flow cases investigated, which extend from the inlet to x/D = 1.7, where x is the axial polar coordinate, and D is the test section diameter. Five-hole pitot probe pressure measurements are used to determine time-mean velocities, and corresponding flow situations are predicted and compared to results of experimental data. Excellent agreement is found for the nonswirling flow, although poor agreement is found for swirling flow cases, especially near the inlet. The discrepancy is attributed to the lack of realism in the turbulence model, and/or to inaccurate specification of time-mean velocity and turbulence energy distributions at the inlet.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 82-0177 , Aerospace Sciences Meeting; Jan 11, 1982 - Jan 14, 1982; Orlando, FL
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: This viewgraph presentation discusses (1) turbulence modeling: challenges in turbulence modeling, desirable attributes of turbulence models, turbulence models in FLUENT, and examples using FLUENT; and (2) combustion modeling: turbulence-chemistry interaction and FLUENT equilibrium model. As of now, three turbulence models are provided: the conventional k-epsilon model, the renormalization group model, and the Reynolds-stress model. The renormalization group k-epsilon model has broadened the range of applicability of two-equation turbulence models. The Reynolds-stress model has proved useful for strongly anisotropic flows such as those encountered in cyclones, swirlers, and combustors. Issues remain, such as near-wall closure, with all classes of models.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 131-142
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Using global interpolation functions (GIF's) boundary element solutions are obtained for two-dimensional laminar flows. Two schemes are proposed for handling the convective terms. The first treats convection as a forcing function, and converts the flow equations to pseudo-Poisson equations. In the second scheme, some convective effect is incorporated into the fundamental solution used in constructing the pertinent integral equations. The lid-driven cavity flow is selected as the benchmark problem.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: The Sixth Annual Thermal and Fluids Analysis Workshop; p 233-246
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: This paper describes a self-contained, automated methodology for flow control along with a validation of the methodology for the problem of boundary layer instability suppression. The objective of control is to match the stress vector along a portion of the boundary to a given vector; instability suppression is achieved by choosing the given vector to be that of a steady base flow, e.g., Blasius boundary layer. Control is effected through the injection or suction of fluid through a single orifice on the boundary. The present approach couples the time-dependent Navier-Stokes system with an adjoint Navier-Stokes system and optimality conditions from which optimal states, i.e., unsteady flow fields, and control, e.g., actuators, may be determined. The results demonstrate that instability suppression can be achieved without any a priori knowledge of the disturbance, which is significant because other control techniques have required some knowledge of the flow unsteadiness such as frequencies, instability type, etc.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-198215 , NAS 1.26:198215 , ICASE-95-64 , NIPS-95-06129
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-07
    Description: Turbulent sudden expansion flows are of significant theoretical and practical importance. Such flows have been the subject of extensive analytical and experimental study for decades, but many issues are still unresolved. Detailed information on reacting sudden expansion flows is very limited, since suitable measurement techniques have only been available in recent years. The present study of reacting flow in an axisymmetric sudden expansion was initiated under NASA support in December 1983. It is an extension of a reacting flow program which has been carried out with Air Force support under Contract F33615-81-K-2003. Since the present effort has just begun, results are not yet available. Therefore a brief overview of results from the Air Force program will be presented to indicate the basis for the work to be carried out.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center Combust. Fundamentals Res.; p 189-198
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-07
    Description: Aerothermodynamic development flight test data from the first orbital flight test of the Space Transportation System (STS) transmitted after entry blackout is given. Engineering predictions of boundary layer transition and numerical simulations of the orbiter flow field were confirmed. The data tended to substantiate preflight predictions of surface catalysis phenomena. The thermal response of the thermal protection system was as expected. The only exception is that internal free convection was found to be significant in limiting the peak temperature of the structure in areas which do not have internal insulation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Langley Research Center Computational Aspects of Heat Transfer in Struct.; p 327-347
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-07
    Description: The modes are characterized by their frequency, the attendant displacement of fluid boundaries, and the flow pressure fields within the fluids. The drops consist of three fluids; a core fluid, a fluid shell surrounding the core, and a host fluid surrounding the shell. These fluids are assumed to be inviscid and incompressible, and the core and the shell to be concentric. The theory is obtained by linearization of the equations of fluid motion to the lowest order of nonlinearity that yields the normal modes. Numerical values of mode frequencies and the associated relative displacements of the fluid boundaries are presented for several specific systems, and the results compared with observations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Proc. of the 2d Intern. Colloq. on Drops and Bubbles; p 7-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-07
    Description: By amplitude-modulating the driving voltage of an acoustic levitating apparatus, a strong core centering force was generated in a submillimeter compound droplet system suspended by the radiation pressure in a gaseous medium. Depending on the acoustic characteristics of the droplet system, it was found that the technique can be utilized advantageously in the multiple-layer coating of an inertial confinement fusion pellet.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Proc. of the 2d Intern. Colloq. on Drops and Bubbles; p 107-111
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-07
    Description: A 2.5 cm diameter water drop was successfully deployed and manipulated in a triaxial acoustic resonance chamber during a 240 sec low-gravity SPAR rocket flight. Oscillation and rotation were induced by modulating and phase shifting the signals to the speakers. Portions of the film record were digitized and analyzed. Spectral analysis brought out the n = 2, 3, 4 free oscillation modes of the drop, its very low-frequency center-of-mass motion in the acoustic potential well, and the forced oscillation frequency. The drop boundaries were least-square fitted to general ellipses, providing eccentricities of the distorted drop. The normalized equatorial area of the rotating drop was plotted vs a rotational parameter, and was in excellent agreement with values derived from the theory of equilibrium shapes of rotating liquid drops.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Proc. of the 2d Intern. Colloq. on Drops and Bubbles; p 31-38
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...