ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-04-09
    Description: HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ivan, M -- Kondo, K -- Yang, H -- Kim, W -- Valiando, J -- Ohh, M -- Salic, A -- Asara, J M -- Lane, W S -- Kaelin , W G Jr -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):464-8. Epub 2001 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11292862" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Cell Hypoxia ; Cell Line ; Cobalt/pharmacology ; Deferoxamine/pharmacology ; Humans ; Hydroxylation ; Hydroxyproline/*metabolism ; *Ligases ; Mass Spectrometry ; Mice ; Molecular Sequence Data ; Oxygen/*physiology ; Protein Structure, Tertiary ; Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/*metabolism ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-07-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gelb, Michael H -- Hol, Wim G J -- New York, N.Y. -- Science. 2002 Jul 19;297(5580):343-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Chemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12130767" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antimalarials/chemistry/pharmacology/therapeutic use ; *Antiprotozoal Agents/chemistry/pharmacology/therapeutic use ; Chagas Disease/drug therapy/parasitology ; Chemistry, Pharmaceutical ; Combinatorial Chemistry Techniques ; Computational Biology ; Databases, Factual ; Drug Design ; Drug Resistance ; Genomics ; Humans ; Leishmania/drug effects/genetics/metabolism ; Leishmaniasis/drug therapy/parasitology ; Malaria/drug therapy/parasitology ; Plasmodium falciparum/drug effects/genetics/metabolism ; Plasmodium vivax/drug effects/genetics ; *Trypanocidal Agents/chemistry/pharmacology/therapeutic use ; Trypanosoma brucei brucei/drug effects/genetics/metabolism ; Trypanosoma cruzi/drug effects/genetics/metabolism ; Trypanosomiasis, African/drug therapy/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-04-28
    Description: Schizophrenia is a complex disorder, and there is substantial evidence supporting a genetic etiology. Despite this, prior attempts to localize susceptibility loci have produced predominantly suggestive findings. A genome-wide scan for schizophrenia susceptibility loci in 22 extended families with high rates of schizophrenia provided highly significant evidence of linkage to chromosome 1 (1q21-q22), with a maximum heterogeneity logarithm of the likelihood of linkage (lod) score of 6.50. This linkage result should provide sufficient power to allow the positional cloning of the underlying susceptibility gene.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787922/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787922/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brzustowicz, L M -- Hodgkinson, K A -- Chow, E W -- Honer, W G -- Bassett, A S -- 53216/Canadian Institutes of Health Research/Canada -- K08 MH01392/MH/NIMH NIH HHS/ -- N01-HG-65403/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 28;288(5466):678-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA. brzustowicz@axon.rutgers.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10784452" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Mapping ; Chromosomes, Human, Pair 1/*genetics ; Computer Simulation ; Female ; Genes, Dominant ; Genes, Recessive ; Genetic Heterogeneity ; Genetic Linkage ; Genetic Markers ; *Genetic Predisposition to Disease ; Humans ; Likelihood Functions ; Lod Score ; Male ; Models, Genetic ; Pedigree ; Schizophrenia/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-07-13
    Description: Specific short oligonucleotide sequences that enhance pre-mRNA splicing when present in exons, termed exonic splicing enhancers (ESEs), play important roles in constitutive and alternative splicing. A computational method, RESCUE-ESE, was developed that predicts which sequences have ESE activity by statistical analysis of exon-intron and splice site composition. When large data sets of human gene sequences were used, this method identified 10 predicted ESE motifs. Representatives of all 10 motifs were found to display enhancer activity in vivo, whereas point mutants of these sequences exhibited sharply reduced activity. The motifs identified enable prediction of the splicing phenotypes of exonic mutations in human genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fairbrother, William G -- Yeh, Ru-Fang -- Sharp, Phillip A -- Burge, Christopher B -- 1 R01 HG02439-01/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 9;297(5583):1007-13. Epub 2002 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12114529" target="_blank"〉PubMed〈/a〉
    Keywords: Computational Biology ; Consensus Sequence ; DNA, Complementary ; Databases, Nucleic Acid ; *Exons ; *Genes ; *Genome, Human ; Humans ; Hypoxanthine Phosphoribosyltransferase/genetics ; Introns ; Oligonucleotides/genetics ; Point Mutation ; *RNA Splicing ; *Regulatory Sequences, Nucleic Acid ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-05-11
    Description: The ubiquitination of the hypoxia-inducible factor (HIF) by the von Hippel-Lindau tumor suppressor (pVHL) plays a central role in the cellular response to changes in oxygen availability. pVHL binds to HIF only when a conserved proline in HIF is hydroxylated, a modification that is oxygen-dependent. The 1.85 angstrom structure of a 20-residue HIF-1alpha peptide-pVHL-ElonginB-ElonginC complex shows that HIF-1alpha binds to pVHL in an extended beta strand-like conformation. The hydroxyproline inserts into a gap in the pVHL hydrophobic core, at a site that is a hotspot for tumorigenic mutations, with its 4-hydroxyl group recognized by buried serine and histidine residues. Although the beta sheet-like interactions contribute to the stability of the complex, the hydroxyproline contacts are central to the strict specificity characteristic of signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Min, Jung-Hyun -- Yang, Haifeng -- Ivan, Mircea -- Gertler, Frank -- Kaelin, William G Jr -- Pavletich, Nikola P -- New York, N.Y. -- Science. 2002 Jun 7;296(5574):1886-9. Epub 2002 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular Biochemistry and Biophysics Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004076" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Hydroxylation ; Hydroxyproline/*metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit ; Ligases/*chemistry/genetics/metabolism ; Macromolecular Substances ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Transcription Factors/*chemistry/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2000-02-11
    Description: The nonclassical major histocompatibility complex (MHC) class I molecule HLA-E inhibits natural killer (NK) cell-mediated lysis by interacting with CD94/NKG2A receptors. Surface expression of HLA-E depends on binding of conserved peptides derived from MHC class I molecules. The same peptide is present in the leader sequence of the human cytomegalovirus (HCMV) glycoprotein UL40 (gpUL40). It is shown that, independently of the transporter associated with antigen processing, gpUL40 can up-regulate expression of HLA-E, which protects targets from NK cell lysis. While classical MHC class I molecules are down-regulated, HLA-E is up-regulated by HCMV. Induction of HLA-E surface expression by gpUL40 may represent an escape route for HCMV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomasec, P -- Braud, V M -- Rickards, C -- Powell, M B -- McSharry, B P -- Gadola, S -- Cerundolo, V -- Borysiewicz, L K -- McMichael, A J -- Wilkinson, G W -- New York, N.Y. -- Science. 2000 Feb 11;287(5455):1031.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Wales College of Medicine, Cardiff CF14 4XN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10669413" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; *Antigens, CD ; Cell Line ; Cell Membrane/immunology ; Cells, Cultured ; Conserved Sequence ; Cytomegalovirus/genetics/immunology/*metabolism ; Cytotoxicity, Immunologic ; Down-Regulation ; HLA Antigens/immunology/*metabolism ; Histocompatibility Antigens Class I/immunology/*metabolism ; Humans ; Killer Cells, Natural/*immunology ; Molecular Sequence Data ; Open Reading Frames ; Protein Sorting Signals/chemistry/*metabolism ; Receptors, Immunologic/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Transfection ; Up-Regulation ; Viral Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-08-11
    Description: Hypertension is a major public health problem of largely unknown cause. Here, we identify two genes causing pseudohypoaldosteronism type II, a Mendelian trait featuring hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Both genes encode members of the WNK family of serine-threonine kinases. Disease-causing mutations in WNK1 are large intronic deletions that increase WNK1 expression. The mutations in WNK4 are missense, which cluster in a short, highly conserved segment of the encoded protein. Both proteins localize to the distal nephron, a kidney segment involved in salt, K+, and pH homeostasis. WNK1 is cytoplasmic, whereas WNK4 localizes to tight junctions. The WNK kinases and their associated signaling pathway(s) may offer new targets for the development of antihypertensive drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, F H -- Disse-Nicodeme, S -- Choate, K A -- Ishikawa, K -- Nelson-Williams, C -- Desitter, I -- Gunel, M -- Milford, D V -- Lipkin, G W -- Achard, J M -- Feely, M P -- Dussol, B -- Berland, Y -- Unwin, R J -- Mayan, H -- Simon, D B -- Farfel, Z -- Jeunemaitre, X -- Lifton, R P -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1107-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute; Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06510 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human, Pair 12/genetics ; Chromosomes, Human, Pair 17/genetics ; Cytoplasm/enzymology ; Female ; Gene Expression Regulation, Enzymologic ; Genetic Linkage ; Humans ; Hypertension/enzymology/*genetics/physiopathology ; Intercellular Junctions/enzymology ; Intracellular Signaling Peptides and Proteins ; Introns ; Kidney Tubules, Collecting/enzymology/ultrastructure ; Kidney Tubules, Distal/enzymology/ultrastructure ; Male ; Membrane Proteins/metabolism ; Microscopy, Fluorescence ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Pedigree ; Phosphoproteins/metabolism ; Protein-Serine-Threonine Kinases/chemistry/*genetics/metabolism ; Pseudohypoaldosteronism/enzymology/*genetics/physiopathology ; Sequence Deletion ; Signal Transduction ; Zonula Occludens-1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-28
    Description: The dynamic glycosylation of serine or threonine residues on nuclear and cytosolic proteins by O-linked beta-N-acetylglucosamine (O-GlcNAc) is abundant in all multicellular eukaryotes. On several proteins, O-GlcNAc and O-phosphate alternatively occupy the same or adjacent sites, leading to the hypothesis that one function of this saccharide is to transiently block phosphorylation. The diversity of proteins modified by O-GlcNAc implies its importance in many basic cellular and disease processes. Here we systematically examine the current data implicating O-GlcNAc as a regulatory modification important to signal transduction cascades.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wells, L -- Vosseller, K -- Hart, G W -- CA42486/CA/NCI NIH HHS/ -- CA83261/CA/NCI NIH HHS/ -- GM20528/GM/NIGMS NIH HHS/ -- HD13563/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2376-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11269319" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/*metabolism ; Animals ; Cell Nucleus/*metabolism ; Cytoplasm/*metabolism ; Glucose/metabolism ; Glycoproteins/metabolism ; Glycosylation ; Humans ; N-Acetylglucosaminyltransferases/metabolism ; Nuclear Proteins/metabolism ; Phosphorylation ; Proteins/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2001-08-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bush, G W -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1244-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509705" target="_blank"〉PubMed〈/a〉
    Keywords: Bioethics ; Cell Line ; Cloning, Organism ; Embryo, Mammalian/*cytology ; Financing, Government ; Humans ; Life ; Public Policy ; *Research Support as Topic ; *Stem Cells ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-02-08
    Description: The obesity epidemic shows no signs of abating. There is an urgent need to push back against the environmental forces that are producing gradual weight gain in the population. Using data from national surveys, we estimate that affecting energy balance by 100 kilocalories per day (by a combination of reductions in energy intake and increases in physical activity) could prevent weight gain in most of the population. This can be achieved by small changes in behavior, such as 15 minutes per day of walking or eating a few less bites at each meal. Having a specific behavioral target for the prevention of weight gain may be key to arresting the obesity epidemic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hill, James O -- Wyatt, Holly R -- Reed, George W -- Peters, John C -- DK42549/DK/NIDDK NIH HHS/ -- DK48520/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):853-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Nutrition, University of Colorado Health Sciences Center, Denver, CO 80262, USA. james.hill@uchsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574618" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Child ; *Energy Intake ; *Energy Metabolism ; Exercise ; Feeding Behavior ; *Health Behavior ; Humans ; Life Style ; Motor Activity ; Obesity/complications/*epidemiology/*prevention & control ; Physical Exertion ; Prevalence ; Public Health ; Risk Factors ; United States/epidemiology ; Walking ; Weight Gain
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...