ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (10)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2009-07-29
    Description: Balloon water vapour in situ and remote measurements in the tropical upper troposphere and lower stratosphere (UTLS) obtained during the HIBISCUS campaign around 20° S in Brazil in February–March 2004 using a tunable diode laser (μSDLA), a surface acoustic wave (SAW) and a Vis-NIR solar occultation spectrometer (SAOZ) on a long duration balloon, have been used for evaluating the performances of satellite borne remote water vapour instruments available at the same latitude and measurement period. In the stratosphere, HALOE displays the best precision (2.5%), followed by SAGE II (7%), MIPAS (10%), SAOZ (20–25%) and SCIAMACHY (35%), all of which show approximately constant H2O mixing ratios between 20–25 km. Compared to HALOE of ±10% accuracy between 0.1–100 hPa, SAGE II and SAOZ show insignificant biases, MIPAS is wetter by 10% and SCIAMACHY dryer by 20%. The currently available GOMOS profiles of 25% precision show a positive vertical gradient in error for identified reasons. Compared to these, the water vapour of the Reprobus Chemistry Transport Model, forced at pressures higher than 95 hPa by the ECMWF analyses, is dryer by about 1 ppmv (20%). In the lower stratosphere between 16–20 km, most notable features are the steep degradation of MIPAS precision below 18 km, and the appearance of biases between instruments far larger than their quoted total uncertainty. HALOE and SAGE II (after spectral adjustment for reducing the bias with HALOE at northern mid-latitudes) both show decreases of water vapour with a minimum at the tropopause not seen by other instruments or the model, possibly attributable to an increasing error in the HALOE altitude registration. Between 16–18 km where the water vapour concentration shows little horizontal variability, and where the μSDLA balloon measurements are not perturbed by outgassing, the average mixing ratios reported by the remote sensing instruments are substantially lower than the 4–5 ppmv observed by the μSDLA. Differences between μSDLA and HALOE and SAGE II (of the order of −2 ppmv), SCIAMACHY, MIPAS and GOMOS (−1 ppmv) and SAOZ (−0.5 ppmv), exceed the 10% uncertainty of μSDLA, implying larger systematic errors than estimated for the various instruments. In the upper troposphere, where the water vapour concentration is highly variable, AIRS v5 appears to be the most consistent within its 25% uncertainty with balloon in-situ measurements as well as ECMWF. Most of the remote measurements show less reliability in the upper troposphere, losing sensitivity possibly because of absorption line saturation in their spectral ranges (HALOE, SAGE II and SCIAMACHY), instrument noise exceeding 100% (MIPAS) or imperfect refraction correction (GOMOS). An exception is the SAOZ-balloon, employing smaller H2O absorption bands in the troposphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-02-05
    Description: Using water vapor data from HALOE and SAGE II, an anti-correlation between planetary wave driving (here expressed by the mid-latitude eddy heat flux at 50 hPa added from both hemispheres) and tropical lower stratospheric (TLS) water vapor has been obtained. This appears to be a manifestation of the inter-annual variability of the Brewer-Dobson (BD) circulation strength (the driving of which is generally measured in terms of the mid-latitude eddy heat flux), and hence amount of water vapor entering the stratosphere. Some years such as 1991 and 1997 show, however, a clear departure from the anti-correlation which suggests that the water vapor changes in TLS can not be attributed solely to changes in extratropical planetary wave activity (and its effect on the BD circulation). After 2000 a sudden decrease in lower stratospheric water vapor has been reported in earlier studies based upon satellite data from HALOE, SAGE II and POAM III indicating that the lower stratosphere has become drier since then. This is consistent with a sudden rise in the combined mid-latitude eddy heat flux with nearly equal contribution from both hemispheres as shown here and with the increase in tropical upwelling and decrease in cold point temperatures found by Randel et al. (2006). The low water vapor and enhanced planetary wave activity (in turn strength of the BD circulation) has persisted until the end of the satellite data records. From a multi-variate regression analysis applied to 27 years of NCEP and HadAT2 (radiosonde) temperatures (up to 2005) with contributions from solar cycle, stratospheric aerosols and QBO removed, the enhancement wave driving after 2000 is estimated to contribute up to 0.7 K cooling to the overall TLS temperature change during the period 2001–2005 when compared to the period 1996–2000. NCEP cold point temperature show an average decrease of nearly 0.4 K from changes in the wave driving, which is consistent with observed mean TLS water vapor changes of about −0.2 ppm after 2000.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-04-13
    Description: Global total ozone measurements from various satellite instruments such as SBUV, TOMS, and GOME show an increase in zonal mean total ozone at northern hemispheric (NH) mid to high latitudes since the mid-nineties. This increase could be expected from the peaking and start of decline in the effective stratospheric halogen loading, but the rather rapid increase observed in NH zonal mean total ozone suggests that another physical mechanism such as winter planetary wave activity has increased which has led to higher stratospheric Arctic temperatures. This has enhanced ozone transport into higher latitudes in recent years as part of the residual circulation and at the same time reduced the frequency of cold Arctic winters with enhanced polar ozone loss. Results from various multi-variate linear regression analyses using SBUV V8 total ozone with explanatory variables such as a linear trend or, alternatively, EESC (equivalent effective stratospheric chlorine) and on the other hand planetary wave driving (eddy heat flux) or, alternatively, polar ozone loss (PSC volume) in addition to proxies for stratospheric aerosol loading, QBO, and solar cycle, all considered to be main drivers for ozone variability, are presented. It is shown that the main contribution to the recent increase in NH total ozone is from the combined effect of rising tropospheric driven planetary wave activity associated with reduced polar ozone loss at high latitudes as well as increasing solar activity. This conclusion can be drawn regardless of the use of linear trend or EESC terms in our statistical model. It is also clear that more years of data will be needed to further improve our estimates of the relative contributions of the individual processes to decadal ozone variability. The question remains if the observed increase in planetary wave driving is part of natural decadal atmospheric variability or will persist. If the latter is the case, it could be interpreted as a possible signature of climate change.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-09-28
    Description: The compact relationship between stratospheric temperatures (as well as ozone) and tropospheric generated planetary wave activity have been widely discussed. Higher wave activity leads to a strengthening of the Brewer-Dobson (BD) circulation, which results in warmer/colder temperatures in the polar/tropical stratosphere. The influence of this wave activity on stratospheric water vapor (WV) is not yet well explored primarily due to lack of high quality long term data sets. Using WV data from HALOE and SAGE II, an anti-correlation between planetary wave driving (here expressed by the mid-latitude eddy heat flux at 50 hPa added from both hemispheres) and tropical lower stratospheric (TLS) WV has been found. This appears to be the most direct manifestation of the inter-annual variability of the known relationship between ascending motion in the tropical stratosphere (due to rising branch of the BD circulation) and the amount of the WV entering into the stratosphere from the tropical tropopause layer. A decrease in planetary wave activity in the mid-nineties is probably responsible for the increasing trends in stratospheric WV until late 1990s. After 2000 a sudden decrease in lower stratospheric WV has been reported and was observed by different satellite instruments such as HALOE, SAGE II and POAM III indicating that the lower stratosphere has become drier since then. This is consistent with a sudden rise in the combined mid-latitude eddy heat flux with nearly equal contribution from both hemispheres. The low water vapor and enhanced strength of the Brewer-Dobson circulation has persisted until now. It is estimated that the strengthening of the BD circulation after 2000 contributed to a 0.7 K cooling in the TLS.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-11-09
    Description: Global total ozone measurements from various satellite instruments such as SBUV, TOMS, and GOME show an increase in zonal mean total ozone at NH mid to high latitudes since the mid-nineties. This increase could be expected from the peaking and start of decline in the effective stratospheric halogen loading, but the rather rapid increase observed in NH zonal mean total ozone suggests that another physical mechanism such as winter planetary wave activity has increased which has led to higher stratospheric Arctic temperatures. This has enhanced ozone transport into higher latitudes in recent years as part of the residual circulation and at the same time reduced the frequency of cold Arctic winters with enhanced polar ozone loss. Results from various multi-variate linear regression analyses using SBUV V8 total ozone with explanatory variables such as a linear trend or, alternatively, EESC (effective equivalent stratospheric chlorine) and on the other hand planetary wave driving (eddy heat flux) or, alternatively, polar ozone loss (PSC volume) in addition to proxies for stratospheric aerosol loading, QBO, and solar cycle, all considered to be main drivers for ozone variability, are presented. It is shown that the main contribution to the recent increase in NH total ozone is from the combined effect of rising tropospheric driven planetary wave activity associated with reduced polar ozone loss at high latitudes as well as increasing solar activity. This conclusion can be drawn regardless of the use of linear trend or EESC terms in our statistical model. It is also clear that more years of data will be needed to further improve our estimates of the relative contributions of the individual processes to decadal ozone variability. The question remains if the observed increase in planetary wave driving is part of the natural decadal atmospheric variability or will persist. If the latter is the case, it could be interpreted as a possible signature of climate change.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-05-28
    Description: The EU CANDIDOZ project investigated the chemical and dynamical influences on decadal ozone trends focusing on the Northern Hemisphere. High quality long-term ozone data sets, satellite-based as well as ground-based, and the long-term meteorological reanalyses from ECMWF and NCEP are used together with advanced multiple regression models and atmospheric models to assess the relative roles of chemistry and transport in stratospheric ozone changes. This overall synthesis of the individual analyses in CANDIDOZ shows clearly one common feature in the NH mid latitudes and in the Arctic: an almost monotonic negative trend from the late 1970s to the mid 1990s followed by an increase. In most trend studies, the Equivalent Effective Stratospheric Chlorine (EESC) which peaked in 1997 as a consequence of the Montreal Protocol was observed to describe ozone loss better than a simple linear trend. Furthermore, all individual analyses point to changes in dynamical drivers, such as the residual circulation (responsible for the meridional transport of ozone into middle and high latitudes) playing a key role in the observed turnaround. The changes in ozone transport are associated with variations in polar chemical ozone loss via heterogeneous ozone chemistry on PSCs (polar stratospheric clouds). Synoptic scale processes as represented by the new equivalent latitude proxy, by conventional tropopause altitude or by 250 hPa geopotential height have also been successfully linked to the recent ozone increases in the lowermost stratosphere. These show significant regional variation with a large impact over Europe and seem to be linked to changes in tropospheric climate patterns such as the North Atlantic Oscillation. Some influence in recent ozone increases was also attributed to the rise in solar cycle number 23. Changes from the late 1970s to the mid 1990s were found in a number of characteristics of the Arctic vortex. However, only one trend was found when more recent years are also considered, namely the tendency for cold winters to become colder.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3EGU General Assembly 2005, 24-29 April, Vienna, Austria
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-16
    Description: Global total ozone measurements from various satellite instruments such as SBUV, TOMS, and GOME show an increase in zonal mean total ozone at NH mid to high latitudes since the mid-nineties. This increase could be expected from the peaking and start of decline in the effective stratospheric halogen loading, but the rather rapid increase observed in NH zonal mean total ozone suggests that another physical mechanism such as winter planetary wave activity has increased which has led to higher stratospheric Arctic temperatures. This has enhanced ozone transport into higher latitudes in recent years as part of the residual circulation and at the same time reduced the frequency of cold Arctic winters with enhanced polar ozone loss. Results from various multi-variate linear regression analyses using SBUV V8 total ozone with explanatory variables such as a linear trend or, alternatively, EESC (effective equivalent stratospheric chlorine) and on the other hand planetary wave driving (eddy heat flux) or, alternatively, polar ozone loss (PSC volume) in addition to proxies for stratospheric aerosol loading, QBO, and solar cycle, all considered to be main drivers for ozone variability, are presented. It is shown that the main contribution to the recent increase in NH total ozone is from the combined effect of rising tropospheric driven planetary wave activity associated with reduced polar ozone loss at high latitudes as well as increasing solar activity. This conclusion can be drawn regardless of the use of linear trend or EESC terms in our statistical model. It is also clear that more years of data will be needed to further improve our estimates of the relative contributions of the individual processes to decadal ozone variability. The question remains if the observed increase in planetary wave driving is part of the natural decadal atmospheric variability or will persist. If the latter is the case, it could be interpreted as a possible signature of climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3Talk, EGU General Assembly 2005, 24-29 April, Vienna, Austria.
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...