ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-01-19
    Description: Somatic chromosomal deletions in cancer are thought to indicate the location of tumour suppressor genes, by which a complete loss of gene function occurs through biallelic deletion, point mutation or epigenetic silencing, thus fulfilling Knudson's two-hit hypothesis. In many recurrent deletions, however, such biallelic inactivation has not been found. One prominent example is the 5q- syndrome, a subtype of myelodysplastic syndrome characterized by a defect in erythroid differentiation. Here we describe an RNA-mediated interference (RNAi)-based approach to discovery of the 5q- disease gene. We found that partial loss of function of the ribosomal subunit protein RPS14 phenocopies the disease in normal haematopoietic progenitor cells, and also that forced expression of RPS14 rescues the disease phenotype in patient-derived bone marrow cells. In addition, we identified a block in the processing of pre-ribosomal RNA in RPS14-deficient cells that is functionally equivalent to the defect in Diamond-Blackfan anaemia, linking the molecular pathophysiology of the 5q- syndrome to a congenital syndrome causing bone marrow failure. These results indicate that the 5q- syndrome is caused by a defect in ribosomal protein function and suggest that RNAi screening is an effective strategy for identifying causal haploinsufficiency disease genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771855/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771855/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebert, Benjamin L -- Pretz, Jennifer -- Bosco, Jocelyn -- Chang, Cindy Y -- Tamayo, Pablo -- Galili, Naomi -- Raza, Azra -- Root, David E -- Attar, Eyal -- Ellis, Steven R -- Golub, Todd R -- R01 HL082945/HL/NHLBI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Jan 17;451(7176):335-9. doi: 10.1038/nature06494.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18202658" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Diamond-Blackfan/genetics/physiopathology ; Cell Differentiation ; Cells, Cultured ; Chromosome Deletion ; Chromosomes, Human, Pair 5/*genetics ; Erythroid Cells/cytology/metabolism ; Genetic Linkage/*genetics ; Genetic Predisposition to Disease/*genetics ; Hematopoietic Stem Cells/metabolism ; Humans ; Phenotype ; *RNA Interference ; RNA Precursors/genetics/metabolism ; RNA, Ribosomal/genetics/metabolism ; RNA, Ribosomal, 18S/genetics ; Ribosomal Proteins/deficiency/*genetics/metabolism ; Ribosomes/chemistry/genetics/metabolism ; Syndrome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-09-17
    Description: Aberrant activation of the canonical WNT/beta-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival. Although dysregulated beta-catenin activity drives colon tumorigenesis, further genetic perturbations are required to elaborate full malignant transformation. To identify genes that both modulate beta-catenin activity and are essential for colon cancer cell proliferation, we conducted two loss-of-function screens in human colon cancer cells and compared genes identified in these screens with an analysis of copy number alterations in colon cancer specimens. One of these genes, CDK8, which encodes a member of the mediator complex, is located at 13q12.13, a region of recurrent copy number gain in a substantial fraction of colon cancers. Here we show that the suppression of CDK8 expression inhibits proliferation in colon cancer cells characterized by high levels of CDK8 and beta-catenin hyperactivity. CDK8 kinase activity was necessary for beta-catenin-driven transformation and for expression of several beta-catenin transcriptional targets. Together these observations suggest that therapeutic interventions targeting CDK8 may confer a clinical benefit in beta-catenin-driven malignancies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587138/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587138/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Firestein, Ron -- Bass, Adam J -- Kim, So Young -- Dunn, Ian F -- Silver, Serena J -- Guney, Isil -- Freed, Ellen -- Ligon, Azra H -- Vena, Natalie -- Ogino, Shuji -- Chheda, Milan G -- Tamayo, Pablo -- Finn, Stephen -- Shrestha, Yashaswi -- Boehm, Jesse S -- Jain, Supriya -- Bojarski, Emeric -- Mermel, Craig -- Barretina, Jordi -- Chan, Jennifer A -- Baselga, Jose -- Tabernero, Josep -- Root, David E -- Fuchs, Charles S -- Loda, Massimo -- Shivdasani, Ramesh A -- Meyerson, Matthew -- Hahn, William C -- K08 CA134931/CA/NCI NIH HHS/ -- P50CA127003/CA/NCI NIH HHS/ -- R33 CA128625/CA/NCI NIH HHS/ -- R33 CA128625-01A1/CA/NCI NIH HHS/ -- R33CA128625/CA/NCI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Sep 25;455(7212):547-51. doi: 10.1038/nature07179. Epub 2008 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18794900" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic ; Colorectal Neoplasms/*genetics/*metabolism/pathology ; Cyclin-Dependent Kinase 8 ; Cyclin-Dependent Kinases/deficiency/*genetics/*metabolism ; Gene Dosage ; *Gene Expression Regulation, Neoplastic ; Humans ; Oncogene Proteins/deficiency/genetics/metabolism ; *Oncogenes ; RNA Interference ; Transcription, Genetic ; beta Catenin/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-10-23
    Description: The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkappaB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-kappaB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-kappaB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783335/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783335/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barbie, David A -- Tamayo, Pablo -- Boehm, Jesse S -- Kim, So Young -- Moody, Susan E -- Dunn, Ian F -- Schinzel, Anna C -- Sandy, Peter -- Meylan, Etienne -- Scholl, Claudia -- Frohling, Stefan -- Chan, Edmond M -- Sos, Martin L -- Michel, Kathrin -- Mermel, Craig -- Silver, Serena J -- Weir, Barbara A -- Reiling, Jan H -- Sheng, Qing -- Gupta, Piyush B -- Wadlow, Raymond C -- Le, Hanh -- Hoersch, Sebastian -- Wittner, Ben S -- Ramaswamy, Sridhar -- Livingston, David M -- Sabatini, David M -- Meyerson, Matthew -- Thomas, Roman K -- Lander, Eric S -- Mesirov, Jill P -- Root, David E -- Gilliland, D Gary -- Jacks, Tyler -- Hahn, William C -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-03/CA/NCI NIH HHS/ -- R01 CA130988/CA/NCI NIH HHS/ -- R01 CA130988-01A2/CA/NCI NIH HHS/ -- R33 CA128625/CA/NCI NIH HHS/ -- R33 CA128625-01A1/CA/NCI NIH HHS/ -- R33 CA128625-02/CA/NCI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA09172-33/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Nov 5;462(7269):108-12. doi: 10.1038/nature08460. Epub 2009 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847166" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Apoptosis ; Cell Line, Tumor ; Cell Survival ; Gene Expression Profiling ; Genes, Lethal ; Genes, ras/*genetics ; Humans ; Lung Neoplasms/genetics/metabolism/pathology ; Neoplasms/genetics/metabolism/pathology ; Oncogene Protein p21(ras)/*genetics/*metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins c-rel/metabolism ; *RNA Interference ; Signal Transduction ; bcl-X Protein/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-09-05
    Description: Models of mammalian regulatory networks controlling gene expression have been inferred from genomic data but have largely not been validated. We present an unbiased strategy to systematically perturb candidate regulators and monitor cellular transcriptional responses. We applied this approach to derive regulatory networks that control the transcriptional response of mouse primary dendritic cells to pathogens. Our approach revealed the regulatory functions of 125 transcription factors, chromatin modifiers, and RNA binding proteins, which enabled the construction of a network model consisting of 24 core regulators and 76 fine-tuners that help to explain how pathogen-sensing pathways achieve specificity. This study establishes a broadly applicable, comprehensive, and unbiased approach to reveal the wiring and functions of a regulatory network controlling a major transcriptional response in primary mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879337/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879337/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amit, Ido -- Garber, Manuel -- Chevrier, Nicolas -- Leite, Ana Paula -- Donner, Yoni -- Eisenhaure, Thomas -- Guttman, Mitchell -- Grenier, Jennifer K -- Li, Weibo -- Zuk, Or -- Schubert, Lisa A -- Birditt, Brian -- Shay, Tal -- Goren, Alon -- Zhang, Xiaolan -- Smith, Zachary -- Deering, Raquel -- McDonald, Rebecca C -- Cabili, Moran -- Bernstein, Bradley E -- Rinn, John L -- Meissner, Alex -- Root, David E -- Hacohen, Nir -- Regev, Aviv -- DP1 OD003958/OD/NIH HHS/ -- DP1 OD003958-01/OD/NIH HHS/ -- DP2 OD002230/OD/NIH HHS/ -- DP2 OD002230-01/OD/NIH HHS/ -- R21 AI071060/AI/NIAID NIH HHS/ -- R21 AI071060-01/AI/NIAID NIH HHS/ -- R21 AI71060/AI/NIAID NIH HHS/ -- S10 RR026688/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):257-63. doi: 10.1126/science.1179050. Epub 2009 Sep 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19729616" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/*immunology ; Chromatin Assembly and Disassembly ; DNA, Single-Stranded/immunology ; Dendritic Cells/*immunology/*metabolism ; Feedback, Physiological ; Gene Expression Profiling ; *Gene Expression Regulation ; *Gene Regulatory Networks ; Inflammation/immunology/*metabolism ; Lipopeptides/immunology ; Lipopolysaccharides/immunology ; Mice ; Mice, Inbred C57BL ; Poly I-C/immunology ; RNA-Binding Proteins/metabolism ; Toll-Like Receptors/agonists ; Transcription Factors/metabolism ; Transcription, Genetic ; Viruses/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...