ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (14)
  • 2005-2009  (14)
Collection
Years
Year
  • 1
    Publication Date: 2017-10-02
    Description: Mars Exploration Rover Opportunity discovered sedimentary dirty evaporites in Meridiani Planum that were deposited in salt-water playas or sabkhas in the Noachian, roughly coeval with a variety of geomorphic indicators (valley networks, degraded craters and highly eroded terrain) of a possible early warmer and wetter environment. In contrast, the cratered plains of Gusev that Spirit has traversed (exclusive of the Columbia Hills) have been dominated by impact and eolian processes and a gradation history that argues for a dry and desiccating environment since the Late Hesperian. This paper reviews the surficial geology and gradation history of the plains in Gusev crater as observed along the traverse by Spirit that supports this climate change from the two landing sites on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 7; LPI-Contrib-1234-Pt-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-02
    Description: We surveyed the characteristic of non-organized soils at Gusev crater at microscale and macroscale in four main traverse regions: (1) Landing site to Bonneville crater; (2) Bonneville to West Spur; (3) the West Spur region; and (4) the Columbia Hills up to sol 363. Non-organized soils are defined as soils traversed by Spirit that do not include drifts, ripples, or dunes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: Multispectral imaging from the Panoramic Camera (Pancam) instruments on the Mars Exploration Rovers Spirit and Opportunity has provided important new insights about the geology and geologic history of the rover landing sites and traverse locations in Gusev crater and Meridiani Planum. Pancam observations from near-UV to near-IR wavelengths provide limited compositional and mineralogic constraints on the presence abundance, and physical properties of ferric- and ferrous-iron bearing minerals in rocks, soils, and dust at both sites. High resolution and stereo morphologic observations have also helped to infer some aspects of the composition of these materials at both sites. Perhaps most importantly, Pancam observations were often efficiently and effectively used to discover and select the relatively small number of places where in situ measurements were performed by the rover instruments, thus supporting and enabling the much more quantitative mineralogic discoveries made using elemental chemistry and mineralogy data. This chapter summarizes the major compositionally- and mineralogically-relevant results at Gusev and Meridiani derived from Pancam observations. Classes of materials encountered in Gusev crater include outcrop rocks, float rocks, cobbles, clasts, soils, dust, rock grindings, rock coatings, windblown drift deposits, and exhumed whitish/yellowish salty soils. Materials studied in Meridiani Planum include sedimentary outcrop rocks, rock rinds, fracture fills, hematite spherules, cobbles, rock fragments, meteorites, soils, and windblown drift deposits. This chapter also previews the results of a number of coordinated observations between Pancam and other rover-based and Mars-orbital instruments that were designed to provide complementary new information and constraints on the mineralogy and physical properties of martian surface materials.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-02
    Description: We are using data from the Pancam and Microscopic Imager (MI) on the Opportunity rover to characterize the soil grains at Meridiani Planum. We have traced individual grains in all MI images of the soils using the software application ImageJ distributed by NIH, and subsequently derived size and shape properties about the grains. The resolution of the MI is 31 microns per pixel [1] so we limit our measurements to those grains larger than about 0.3 mm in size. In cases where the grain is partially or substantially buried by other grains or finer soil particles, we do not make a measurement. False-color composites from Pancam images that cover the same location imaged by MI are made from the Left 2,5,6 (753, 535, 482 nm) filters or Right 2,7,1 (753, 1009, 430 nm) filters [2] in the Red, Green, and Blue channels, respectively. These color images are then merged with the MI images to illustrate color properties of particular grains. Pancam spectra are also extracted from grains when there is sufficient spatial coverage. in diameter. Figure 2 illustrates the dominance of these small grains at this particular location, which happens to be on the southern wall of Eagle crater. The Pancam color merge with this MI image suggests that the small spherules are more consistent with the basalt grains than the blueberries (spherulitic concretions derived from outcrop rocks [7]). The resolution of Pancam images of this location is on the order of 0.5 mm so the grains are only barely resolved. A Mossbauer measurement taken on an adjacent soil (Sol 53 Vanilla) that is composed solely of these smaller spherules (Fig 1) is consistent with a basaltic composition for the grains. Their concentration at this particular location in a brighter, elongate patch along the southeastern wall compared to elsewhere inside Eagle crater suggests wind activity favored their transport and subsequent deposition here. Their spherical shape is also possibly the result of wind action rounding them during transport, though water action cannot be ruled out.
    Keywords: Geophysics
    Type: Lunar and Planetary Science XXXVI, Part 21; LPI-Contrib-1234-Pt-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-02
    Description: The traverse of the Mars Exploration Rover Opportunity across its Meridiani Planum landing site has shown that wind has affected regolith by creating drifts, dunes, and ubiquitous ripples, by sorting grains during aeolian transport, by forming bright wind streaks downwind from craters seen from orbit, and by eroding rock with abrading, wind-blown material. Pre-landing orbiter observations showed bright and dark streaks tapering away from craters on the Meridiani plains. Further analysis of orbiter images shows that major dust storms can cause bright streak orientations in the area to alternate between NW and SE, implying bright wind streak materials encountered by Opportunity are transient, potentially mobilized deposits. Opportunity performed the first in situ investigation of a martian wind streak, focusing on a bright patch of material just outside the rim of Eagle crater. Data from Pancam, the Miniature Thermal Emission Spectrometer (Mini-TES), the Alpha-Particle X-Ray Spectrometer (APXS), and the Mossbauer spectrometer either are consistent with or permit an air fall dust interpretation. We conclude that air fall dust, deposited in the partial wind shadow of Eagle crater, is responsible for the bright streak seen from orbit, consistent with models involving patchy, discontinuous deposits of air fall dust distributed behind obstacles during periods of atmospheric thermal stability during major dust storms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 18; LPI-Contrib-1234-Pt-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: NASA's New Millennium Program (NMP) Autonomous Sciencecraft Experiment (ASE) [1-3] has been successfully demonstrated in Earth-orbit. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control, image formation, and science processing software was uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 and has been undergoing onboard testing since May 2004 for the near real-time detection of surface modification related to transient geological and hydrological processes such as volcanism [4], ice formation and retreat [5], and flooding [6]. Space autonomy technology developed as part of ASE creates the new capability to autonomously detect, assess, react to, and monitor dynamic events such as flooding. Part of the challenge has been the difficulty to observe flooding in real time at sufficient temporal resolutions; more importantly, it is the large spatial extent of most drainage networks coupled with the size of the data sets necessary to be downlinked from satellites that make it difficult to monitor flooding from space. Below is a description of the algorithms (referred to as ASE Flood water Classifiers) used in tandem with the Hyperion spectrometer instrument on EO-1 to identify flooding and some of the test results.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: Lunar and Planetary Science XXXVI, Part 9; LPI-Contrib-Pt-9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: Erosion rates derived from the Gusev cratered plains and the erosion of weak sulfates by saltating sand at Meridiani Planum are so slow that they argue that the present dry and desiccating environment has persisted since the Early Hesperian. In contrast, sedimentary rocks at Meridiani formed in the presence of groundwater and occasional surface water, and many Columbia Hills rocks at Gusev underwent aqueous alteration during the Late Noachian, approximately coeval with a wide variety of geomorphic indicators that indicate a wetter and likely warmer environment. Two-toned rocks, elevated ventifacts, and perched and undercut rocks indicate localized deflation of the Gusev plains and deposition of an equivalent amount of sediment into craters to form hollows, suggesting average erosion rates of approx.0.03 nm/yr. Erosion of Hesperian craters, modification of Late Amazonian craters, and the concentration of hematite concretions in the soils of Meridiani yield slightly higher average erosion rates of 1-10 nm/yr in the Amazonian. These erosion rates are 2-5 orders of magnitude lower than the slowest continental denudation rates on Earth, indicating that liquid water was not an active erosional agent. Erosion rates for Meridiani just before deposition of the sulfate-rich sediments and other eroded Noachian areas are comparable with slow denudation rates on Earth that are dominated by liquid water. Available data suggest the climate change at the landing sites from wet and likely warm to dry and desiccating occurred sometime between the Late Noachian and the beginning of the Late Hesperian (3.7-3.5 Ga).
    Keywords: Geophysics
    Type: Journal Of Geophysical Research (ISSN 0148-0227); Volume 111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: Following the successful landings of both Mars Exploration Rover (MER) vehicles at Gusev Crater and Meridiani Planum, respectively, their Athena suite of instruments is being used to study the geologic history of these two very different landing sites on Mars that had been selected on the basis of showing different types of evidence for aqueous processes in the planet s past. Utilizing the on-board instruments as well as the rovers mobility system, a wide range of physical properties investigations is carried out as well - the subject of this abstract - that provide additional information on the geology and processes at the sites. Results of the mission in general as well as of the physical properties studies thus far greatly exceed expectations in that observations and measurements by both vehicles show a rich variety in materials and processes: the Gusev site in the vicinity of the lander is remarkably flat and generally devoid of large rocks along traverses up to the time of this writing (approx.Sol 50) and suggestive of a deflated surface with generally only thin veneers of bright dust while exhibiting evidence of a widespread occurrence of a crust from cemented fines that has been observed to fail in the form of blocky clods when disturbed by vehicle rolling action; numerous small and shallow depressions - presumably created by impacts - are observed at the site which are infilled with bright, fine-grained material that likewise appears indurated and which was studied by a trenching experiment; small ripple bedforms are scattered across the site and were characterized in terms of particle size distributions. At the Meridiani site, studies so far - up to approx.Sol 33 - have focussed on soils and the rock outcrop encountered within the approx.20 m diameter crater that the spacecraft came to rest in: from a physical properties point of view, a mantle of dark, well-sorted, apparently basaltic sand with small to moderate cohesion has been of interest - and has been studied by a trenching experiment - as well as a fine-grained unit underlying the mantle at least locally within the crater. Rock grindings were accomplished successfully at both sites at the time of this writing, suggesting different strengths of the two targets (the basaltic rock nicknamed Adirondack at Gusev and the Meridiani rock outcrop) in addition to enabling compositional measurements below the original rock surfaces.
    Keywords: Geophysics
    Type: 35th COSPAR Scientific Assembly; Jul 18, 2004 - Jul 24, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-26
    Description: We have produced regional geologic maps of the Zal, Hi'iaka, and Shamshu regions of Io s antijovian hemisphere based on Galileo mission data. Here we discuss the geologic features, summarize the map units and structures that are present, discuss the nature of volcanic activity, and give an analysis of the volcanic, tectonic, and gradational processes that affect the regions in order to better understand Io s geologic evolution. Zal Region: The Zal region (25-45degN, 65-85degW) consists of Zal Patera (120 km wide x 197 km long), two major mountains (north and south Zal Montes) which border Zal Patera to the west and south [1], and an unnamed patera ("Patera A") west of south Zal Montes. The Zal region includes at least two hotspots detected by Galileo: one along the western scarp of the Zal Patera volcano and one at the "Patera A" volcano. The floor of Zal Patera has been partly resurfaced by dark lava flows since Voyager imaging; portions of the patera floor appear unchanged during the Galileo mission. Mountains exhibit stages of degradation. The western bounding scarp of Zal Patera appears to be a fissure source vent for multiple silicate lava flows. The Zal Montes and Patera complex appears to be an example of volcano-tectonic interactions [1, 2]. Several of the flow units emanate from the fissure at the western scarp [2]. Hi'iaka Region: The Hi'iaka region (approx.12degS-5degN, 75-87degW) consists of Hi'iaka Patera, a large (60 km wide x 95 km long) patera, north and south Hi iaka Montes which border Hi'iaka Patera to the west and south and are L-shaped mirror-images of each other, west Hi'iaka Montes, a small isolated peak, and an unnamed patera ("Patera B") located south of north Hi'iaka Montes. The region includes one hotspot at Hi'iaka Patera. The floor of the patera exhibits flow deposits of differing ages. The eastern scarp of Hi'iaka Patera may be a fissure source vent for the patera floor materials. The Hi iaka Montes and Patera complex appears to be an example of volcano-tectonic interactions [1, 2]. Shamshu Region: The Shamshu region (approx.15degS-5degS, 55-77degW) consists of Shamshu Patera, three mountain units (west, north, and south Shamshu Mons), and a small unnamed patera ("Patera C") southwest of Shamshu Mons.
    Keywords: Geophysics
    Type: Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008; NASA/CP-2008-215469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-26
    Description: Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2008; NASA/CP-2008-215469
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...