ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-08-09
    Description: A two day workshop on Southern Ocean cephalopods was held in Hobart, Tasmania, Australia prior to the triennial 2006 Cephalopod International Advisory Council (CIAC) symposium. The workshop provided a second international forum to present the current state of research and new directions since the last Southern Ocean cephalopod meeting held in 1993. A major focus of the workshop was trophic ecology and the use of a variety of tools that can be applied in Southern Ocean trophic studies for both cephalopod and predator researchers. New tools that are being used as trophic indicators and tracers in food chain pathways include stable isotope, heavy metal and fatty acid signature analysis. Progress is also being made on understanding squid population dynamics in relation to other key components of the ecosystem by incorporating squid data in ecosystem models. Genetic barcoding is now of great value to fish taxonomy as well as other groups and it is expected that a cephalopod barcoding initiative will be an important tool for cephalopod taxonomy. There is a current initiative to produce a new cephalopod beak identification guide to assist predator biologists in identifying cephalopod prey items. There were also general discussions on specific taxonomic issues, Southern Ocean Cephalopod paralarvae and parasites, and suggestions for future CIAC workshop topics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  In: Mineral Deposit Research: Meeting the Global Challenge ; Proccedings of the 8th Biennial SGA Meeting, Beijing, China, 18 - 21 August 2005. , ed. by Mao, J. and Bierlein, F. P. Springer, Berlin, pp. 655-658. ISBN 978-3-540-27945-7
    Publication Date: 2014-03-18
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Cephalopods are highly sensitive to environmental conditions and changes at a range of spatial and temporal scales. Relationships documented between cephalopod stock dynamics and environmental conditions are of two main types: those concerning the geographic distribution of abundance, for which the mechanism is often unknown, and those relating to biological processes such as egg survival, growth, recruitment and migration, where mechanisms are sometimes known and in a very few cases demonstrated by experimental evidence. Cephalopods seem to respond to environmental variation both ‘actively’ (e.g. migrating to areas with more favoured environmental conditions for feeding or spawning) and ‘passively’ (growth and survival vary according to conditions experienced, passive migration with prevailing currents). Environmental effects on early life stages can affect life history characteristics (growth and maturation rates) as well as distribution and abundance. Both large-scale atmospheric and oceanic processes and local environmental variation appear to play important roles in species–environment interactions. While oceanographic conditions are of particular significance for mobile pelagic species such as the ommastrephid squids, the less widely ranging demersal and benthic species may be more dependent on other physical habitat characteristics (e.g. substrate and bathymetry). Coastal species may be impacted by variations in water quality and salinity (related to rainfall and river flow). Gaps in current knowledge and future research priorities are discussed. Key research goals include linking distribution and abundance to environmental effects on biological processes, and using such knowledge to provide environmental indicators and to underpin fishery management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  Bulletin of Volcanology, 47 (3). pp. 447-466.
    Publication Date: 2017-05-05
    Description: A program of geophysical research was carried out as a preliminary stage of study of the Santorini volcanic group. This area is of remarkable geothermal and volcanological interest, and the definition of a volcanological structural model is the starting point for an understanding of the local geodynamic processes. Gravity, magnetic and geoelectrical data proved that: (i) the core of the volcanic edifice consists of a sedimentary-metamorphic basement; (ii) the basement is tectonically disturbed and a linear tectonic system produces a graben-type structure in the middle part of the area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-07
    Description: Live-collected samples of four common reefbuilding coral genera (Acropora, Pocillopora, Goniastrea, Porites) from subtidal and intertidal settings of Heron Reef, Great Barrier Reef, show extensive early marine diagenesis where parts of the coralla less than 3 years old contain abundant macro- and microborings and aragonite, high-Mg calcite, low-Mg calcite, and brucite cements. Many types of cement are associated directly with microendoliths and endobionts that inhabit parts of the corallum recently abandoned by coral polyps. The occurrence of cements that generally do not precipitate in normal shallow seawater (e.g., brucite, low-Mg calcite) highlights the importance of microenvironments in coral diagenesis. Cements precipitated in microenvironments may not reXect ambient seawater chemistry. Hence, geochemical sampling of these cements will contaminate trace-element and stable-isotope inventories used for palaeoclimate and dating analysis. Thus, great care must be taken in vetting samples for both bulk and microanalysis of geochemistry. Visual inspection using scanning electron microscopy may be required for vetting in many cases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Mombacho is a deeply dissected volcano belonging to the Quaternary volcanic chain of Nicaragua. The southern, historic collapse crater (El Crater) currently hosts a fumarolic field with a maximum temperature of 121°C. Chemical and isotopic data from five gas-sampling field campaigns carried out in 2002, 2003 and 2005 highlight the presence of high-temperature gas components (e.g. SO2, HCl and HF), which indicate a significant contribution of juvenile magmatic fluids to the hydrothermal system feeding the gas discharges. This is strongly supported by the mantle-derived helium and carbon isotopic signatures, although the latter is partly masked by either a sedimentary subduction-related or a shallow carbonate component. The observed chemical and isotopic composition of the Mombacho fluids seems to indicate that this volcanic system, although it has not experienced eruptive events during the last centuries, can be considered active and possibly dangerous, in agreement with the geophysical data recorded in the region. Systematic geochemical monitoring of the fumarolic gas discharges, coupled with a seismic and ground deformation network, is highly recommended in order to monitor a possible new eruptive phase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-19
    Description: The published mean δ34S values of ore-related pyrites from orogenic gold deposits of the Eastern Goldfields Province, Yilgarn Craton lie between −4‰ and +4‰. As for orogenic gold deposits worldwide, most deposits have positive means and a restricted range of δ34S values, but some have negative means and wider ranges of δ34S values. Wall-rock carbonation and back-mixing of similar-source fluids with different fluid pathways can explain some of the more negative δ34S signatures. However, structural setting appears to be the most important factor controlling ore-fluid oxidation state and hence the distribution of δ34S values in gold-related pyrites. Shear-hosted deposits appear to have experienced fluid-dominated processes such as phase separation, whereas stockwork, vein-hosted or disseminated deposits formed under conditions of greater rock buffering. At Victory-Defiance, in particular, negative δ34S values are more common in gently dipping dilational structures, compared to more compressional steeply dipping structures. It appears most likely that fluid-pressure fluctuations during fault-valve cycles establish different fluid-flow regimes in structures with different orientations. Rapid fluid-pressure fluctuations in dilational structures during seismic activity can cause partitioning of reduced gas phases from the ore fluid during extreme phase separation and hence are an effective method of ore-fluid oxidation, leading to large, local fluctuations in oxidation state. It is thus not necessary to invoke mixing with oxidised magmatic fluids to explain δ34S signatures indicative of oxidation. In any case, available, robust geochronology in the Eastern Goldfields Province does not support the direct involvement of oxidised magmatic fluids from adjacent granitic intrusions in orogenic gold genesis. Thus, negative mean δ34S values and large variations in δ34S values of ore-related pyrites in world-class orogenic gold deposits are interpreted to result from multiple mechanisms of gold precipitation from a single, ubiquitous ore fluid in varying structural settings, rather than from the involvement of oxidised ore fluids from a different source. Such signatures are indicative, but not diagnostic, of anomalously large orogenic gold systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-06
    Description: Todayrsquos Wadden Sea is a heavily human-altered ecosystem. Shaped by natural forces since its origin 7,500 years ago, humans gradually gained dominance in influencing ecosystem structure and functioning. Here, we reconstruct the timeline of human impacts and the history of ecological changes in the Wadden Sea. We then discuss the ecosystem and societal consequences of observed changes, and conclude with management implications. Human influences have intensified and multiplied over time. Large-scale habitat transformation over the last 1,000 years has eliminated diverse terrestrial, freshwater, brackish and marine habitats. Intensive exploitation of everything from oysters to whales has depleted most large predators and habitat-building species since medieval times. In the twentieth century, pollution, eutrophication, species invasions and, presumably, climate change have had marked impacts on the Wadden Sea flora and fauna. Yet habitat loss and overexploitation were the two main causes for the extinction or severe depletion of 144 species (~20% of total macrobiota). The loss of biodiversity, large predators, special habitats, filter and storage capacity, and degradation in water quality have led to a simplification and homogenisation of the food web structure and ecosystem functioning that has affected the Wadden Sea ecosystem and coastal societies alike. Recent conservation efforts have reversed some negative trends by enabling some birds and mammals to recover and by creating new economic options for society. The Wadden Sea history provides a unique long-term perspective on ecological change, new objectives for conservation, restoration and management, and an ecological baseline that allows us to envision a rich, productive and diverse Wadden Sea ecosystem and coastal society.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-01-28
    Description: A set of digital maps including geology, Quaternary sediments, landscapes, engineering-geological, vegetation, geocryological and the series of regional sources have been selected to characterize the Russian Arctic coast. Based on this data, new maps of engineering geocryological zoning and zoning of the coast with respect to the intensity of exogenous geological processes and risk of technogenic impacts have been generated at the scales of 1:4,000,000–1:8,000,000. These maps are a tool to assess the impact of industry on the Arctic coast of the country.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-11-25
    Description: Recently, several countries have conducted projects to explore and develop natural gas hydrate, which is one of the new alternative energy resources for the future. In Korea, a five-year national research project was initiated in 2000. As part of this project, a seismic survey was performed in the East Sea of Korea to quantify the potential magnitude and distribution of natural gas hydrates. Multi-channel seismic data and core samples have been acquired and recovered in the survey area. Analysis of seismic data show clear bottom simulating reflectors (BSRs), seismic blank zones (or wipe-out zones) with velocity pull-up structure, and pock-marks. In this study, we present the results of seismic surveys which indicate the existence of natural gas hydrates in Korean offshore areas. These results will be applied to select areas for coring (or drilling) and detailed exploration such as 2D seismic survey with long offset or 3D seismic in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...