ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (351)
  • 1955-1959  (71)
Collection
Keywords
Language
Years
Year
  • 1
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 07.0429
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The idea for this book was conceived in early June, 2005 at a paleoaltimetry workshop held at Lehigh University, Lehigh, Pennsyalvania and organized by Dork Sahagian. The workshop was funded by the tectonics program at NSF, and was designed to bring together researchers in paleoaltimetry to discuss different techniques and focus the community on ways of improving paleoelevation estimates and consequent interpretations of geodynamics and tectonics. At this meeting, some commented that a comprehensive volume describing the different methods could help advance the field. I offered to contact the Mineralogical Society of America and the Geochemical Society about publishing a RiMG volume on paleoaltimetry. Because many of the techniques used to infer paleoelevations are geochemically-based or deal with thermodynamic principles, the GS and MSA agreed to the project. Two years and roughly 1000 e-mails later, our book has arrived. The book is organized into 4 sections: Geodynamic and geomorphologic rationale (Clark). This chapter provides the broad rationale behind paleoaltimetry, i.e., why we study it. Stable isotope proxies. These 4 chapters cover theory of stable isotopes in precipitation and their response to altitudinal gradients (Rowley), and stable isotopes sytematics in paleosols (Quade, Garzione and Eiler), silicates (Mulch and Chamberlain) and fossils (Kohn and Dettman). Proxies of atmospheric properties. These 4 chapters cover temperature lapse rates (Meyer), entropy (Forest), and atmospheric pressure proxies, including total atmospheric pressure from gas bubbles in basalt (Sahagian and Proussevitch), and the partial pressure of CO2 (Kouwenberg, Kürshner, and McElwain). Note that clumped isotope thermometry (Quade, Garzione and Eiler) also provides direct estimates of temperature. Radiogenic and cosmogenic nuclides. These 2 chapters cover low-temperature thermochronologic approaches (Reiners) and cosmogenic isotopes (Riihimaki and Libarkin). Some chapters overlap in general content (e.g., basic principles of stable isotopes in precipitation are covered to different degrees in all stable isotope chapters), but no attempt was made to limit authors' discussion of principles, or somehow attempt to arrive at a "consensus view" on any specific topic. Because science advances by critical discussion of concepts, such restrictions were viewed as counterproductive. This does mean that different chapters may present different views on reliability of paleoelevation estimates, and readers are advised to read other chapters in the book on related topics – they may be more closely linked than they might at first appear! I hope readers of this book will discover and appreciate the synergy among paleoaltimetry, climate change, and tectonic geomorphology. These interrelationships create a complex, yet rich field of scientific enquiry that in turn offers insights into climate and geodynamics.
    Type of Medium: Monograph available for loan
    Pages: X, 278 S. , graph. Darst.
    ISBN: 0-939950-78-2 , 978-0-939950-78-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 66
    Classification:
    Geochemistry
    Note: Chapter 1. The Significance of Paleotopography by Marin K. Clark, p. 1 - 22 Chapter 2. Stable Isotope-Based Paleoaltimetry: Theory and Validation by David B. Rowley, p. 23 - 52 Chapter 3. Paleoelevation Reconstruction Using Pedogenic Carbonates by Jay Quade, Carmala Garzione, and John Eiler, p. 53 - 88 Chapter 4. Stable Isotope Paleoaltimetry in Orogenic Belts – The Silicate Record in Surface and Crustal Geological Archives by Andreas Mulch and C. Page Chamberlain, p. 89 - 118 Chapter 5. Paleoaltimetry from Stable Isotope Compositions of Fossils by Matthew J. Kohn and David L. Dettman, p. 119 - 154 Chapter 6. A Review of Paleotemperature–Lapse Rate Methods for Estimating Paleoelevation from Fossil Floras by Herbert W. Meyer, p. 155 - 172 Chapter 7. Paleoaltimetry: A Review of Thermodynamic Methods by Chris E. Forest, p. 173 - 194 Chapter 8. Paleoelevation Measurement on the Basis of Vesicular Basalts by Dork Sahagian and Alex Proussevitch, p. 195 - 214 Chapter 9. Stomatal Frequency Change Over Altitudinal Gradients: Prospects for Paleoaltimetry by Lenny L. R. Kouwenberg, Wolfram M. Kürschner, and Jennifer C. McElwain, p. 215 - 242 Chapter 10. Thermochronologic Approaches to Paleotopography by Peter W. Reiners, p. 243 - 268 Chapter 11. Terrestrial Cosmogenic Nuclides as Paleoaltimetric Proxies by Catherine A. Riihimaki and Julie C. Libarkin, p. 269 - 278
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Description / Table of Contents: The idea for this book was conceived in early June, 2005 at a paleoaltimetry workshop held at Lehigh University, Lehigh, Pennsyalvania and organized by Dork Sahagian. The workshop was funded by the tectonics program at NSF, and was designed to bring together researchers in paleoaltimetry to discuss different techniques and focus the community on ways of improving paleoelevation estimates and consequent interpretations of geodynamics and tectonics. At this meeting, some commented that a comprehensive volume describing the different methods could help advance the field. I offered to contact the Mineralogical Society of America and the Geochemical Society about publishing a RiMG volume on paleoaltimetry. Because many of the techniques used to infer paleoelevations are geochemically-based or deal with thermodynamic principles, the GS and MSA agreed to the project. Two years and roughly 1000 e-mails later, our book has arrived. The book is organized into 4 sections: (1) Geodynamic and geomorphologic rationale (Clark). This chapter provides the broad rationale behind paleoaltimetry, i.e., why we study it. (2) Stable isotope proxies. These 4 chapters cover theory of stable isotopes in precipitation and their response to altitudinal gradients (Rowley), and stable isotopes sytematics in paleosols (Quade, Garzione and Eiler), silicates (Mulch and Chamberlain) and fossils (Kohn and Dettman). (3) Proxies of atmospheric properties. These 4 chapters cover temperature lapse rates (Meyer), entropy (Forest), and atmospheric pressure proxies, including total atmospheric pressure from gas bubbles in basalt (Sahagian and Proussevitch), and the partial pressure of CO2 (Kouwenberg, Kürshner, and McElwain). Note that clumped isotope thermometry (Quade, Garzione and Eiler) also provides direct estimates of temperature. (4) Radiogenic and cosmogenic nuclides. These 2 chapters cover low-temperature thermochronologic approaches (Reiners) and cosmogenic isotopes (Riihimaki and Libarkin). Some chapters overlap in general content (e.g., basic principles of stable isotopes in precipitation are covered to different degrees in all stable isotope chapters), but no attempt was made to limit authors' discussion of principles, or somehow attempt to arrive at a "consensus view" on any specific topic. Because science advances by critical discussion of concepts, such restrictions were viewed as counterproductive. This does mean that different chapters may present different views on reliability of paleoelevation estimates, and readers are advised to read other chapters in the book on related topics – they may be more closely linked than they might at first appear! I hope readers of this book will discover and appreciate the synergy among paleoaltimetry, climate change, and tectonic geomorphology. These interrelationships create a complex, yet rich field of scientific enquiry that in turn offers insights into climate and geodynamics.
    Pages: Online-Ressource (X, 278 Seiten)
    ISBN: 0939950782
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-10-13
    Print ISSN: 0020-7136
    Electronic ISSN: 1097-0215
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Experimental Parasitology 113 (2006): 130-133, doi:10.1016/j.exppara.2005.12.013.
    Description: Nitric oxide (NO) is synthesized enzymatically by nitric oxide synthase (NOS). Several groups have previously presented evidence for NOS activity and immunoreactivity in several parasitic platyhelminths, including schistosomes. Here, we use 4,5-diaminofluorescein-2 diacetate (DAF-2 DA), a fluorescent indicator of NO, to detect NO in living schistosomes. In adult worms, DAF-2 fluorescence is found selectively in epithelial-like cells. Fluorescence increases when worms are incubated in L-arginine, the precursor of NO synthesis, and decreases dramatically in the presence of the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME), indicating that predicted NO release may be NOS-dependent, and that enzymatic NO signaling pathways may play an important role in schistosome physiology.
    Description: This work was supported by NIH grant NS 39103 and NSF grants 0304569 (LLM), and NIH grant AI 40522 and the Neal Cornell Research Fund at the Marine Biological Laboratory (RMG).
    Keywords: Nitric oxide ; Schistosomiasis ; Trematode
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 175555 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kohn, Marion; Steinke, Stephan; Baumann, Karl-Heinz; Donner, Barbara; Meggers, Helge; Zonneveld, Karin A F (2011): Stable oxygen isotopes from the calcareous-walled dinoflagellate Thoracosphaera heimii as a proxy for changes in mixed layer temperatures off NW Africa during the last 45,000 yr. Palaeogeography, Palaeoclimatology, Palaeoecology, 302(3-4), 311-322, https://doi.org/10.1016/j.palaeo.2011.01.019
    Publication Date: 2023-06-27
    Description: The present study is the first study on the stable oxygen isotope composition of the photosynthetic calcareous-walled dinoflagellate species Thoracosphaera heimii off NW Africa during the last 45,000 yr. T. heimii based temperature estimates of sediment core GeoB 8507-3 were compared with those obtained from the stable oxygen isotopes of the planktic foraminifera Globigerina bulloides and Globigerinoides ruber (pink), and the Mg/Ca ratio of G. ruber (pink). We show that the isotopic composition of T. heimii and the temperature estimates based on the equation for inorganically precipitated calcite provide comparable results to those obtained from G. ruber (pink) isotopes and Mg/Ca ratios with exception of the Early Holocene and the Younger Dryas. The recently proposed palaeotemperature equation of Zonneveld et al. (2007), however, provides unrealistic temperature reconstructions that are about 16 °C lower than those based on planktic foraminifera. Thus, this equation needs to be revised. The difference between T. heimii and G. bulloides isotopic and temperature reconstructions can be ascribed to differences in the ecology of both species, especially with regard to their depth habitat and/or seasonal production in the research area. All temperature proxies suggest comparable conditions during the last glacial and Holocene. Small differences between the reconstructed temperature values of T. heimii and the other proxies can be explained by differences in seasonal production of the individual species. The relatively low temperatures recorded by T. heimii at about 15,000 to 8,000 yr BP are interpreted to reflect an increase in duration and/or intensity of the upwelling in the vicinity of the core site in comparison to the last glacial, with an abrupt and strong decrease of upwelling intensity and/or duration during the Early Holocene and the Younger Dryas.
    Keywords: Age, 14C AMS; Age, standard deviation; Age model; Center for Marine Environmental Sciences; DEPTH, sediment/rock; GeoB8507-3; Globigerina bulloides, δ18O; Globigerinoides ruber pink, δ18O; Gravity corer (Kiel type); M58/1; MARUM; Mass spectrometer Finnigan MAT 251; Meteor (1986); SL; Thoracosphaera heimii, δ18O
    Type: Dataset
    Format: text/tab-separated-values, 385 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Spiegel, Cornelia; Kohn, Barry; Raza, Asaf; Rainer, Thomas; Gleadow, Andrew (2007): The effect of long-term low-temperature exposure on apatite fission track stability: A natural annealing experiment in the deep ocean. Geochimica et Cosmochimica Acta, 71(18), 4512-4537, https://doi.org/10.1016/j.gca.2007.06.060
    Publication Date: 2024-01-09
    Description: Since studies on deep-sea cores were carried out in the early 1990s it has been known that ambient temperature may have a marked affect on apatite fission track annealing. Due to sluggish annealing kinetics, this effect cannot be quantified by laboratory annealing experiments. The unknown amount of low-temperature annealing remains one of the main uncertainties for extracting thermal histories from fission track data, particularly for samples which experienced slow cooling in shallow crustal levels. To further elucidate these uncertainties, we studied volcanogenic sediments from five deep-sea drill cores, that were exposed to maximum temperatures between ~10° and 70°C over geological time scales of ~15–120 Ma. Mean track lengths (MTL) and etch pit diameters (Dpar) of all samples were measured, and the chemical composition of each grain analyzed for age and track length measurements was determined by electron microprobe analysis. Thermal histories of the sampled sites were independently reconstructed, based on vitrinite reflectance measurements and/or 1D numerical modelling. These reconstructions were used to test the most widely used annealing models for their ability to predict low-temperature annealing. Our results show that long-term exposure to temperatures below the temperature range of the nominal apatite fission track partial annealing zone results in track shortening ranging between 4 and 11%. Both chlorine content and Dpar values explain the downhole annealing patterns equally well. Low chlorine apatite from one drill core revealed a systematic relation between Si-content and Dpar value. The question whether Si-substitution in apatite has direct and systematic effects on annealing properties however, cannot be addressed by our data. For samples, which remained at temperatures 〈30°C, and which are low in chlorine, the Laslett et al. [Laslett G., Green P., Duddy I. and Gleadow A. (1987) Thermal annealing of fission tracks in apatite. Chem. Geol. 65, 1–13] annealing model predicts MTL up to 0.6 µm longer than those actually measured, whereas for apatites with intermediate to high chlorine content, which experienced temperatures 〉30°C, the predictions of the Laslett et al. (1987) model agree with the measured MTL data within error levels. With few exceptions, predictions by the Ketcham et al. [Ketcham R., Donelick R. and Carlson W. (1999) Variability of apatite fission-track annealing kinetics. III: Extrapolation to geological time scales. Am. Mineral. 84/9, 1235–1255] annealing model are consistent with the measured data for samples which remained at temperatures below ~30°C. For samples which experienced maximum temperatures between ~30 and 70°C, and which are rich in chlorine, the Ketcham et al. (1999) model overestimates track annealing.
    Keywords: 121-755; 121-755A; 129-800; 165-999A; 165-999B; 43-386; 47-397; 47-397A; Caribbean Sea; COMPCORE; Composite Core; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; Glomar Challenger; Joides Resolution; Leg121; Leg129; Leg165; Leg43; Leg47; North Atlantic/CONT RISE; North Pacific Ocean; Ocean Drilling Program; ODP; South Indian Ridge, South Indian Ocean
    Type: Dataset
    Format: application/zip, 15 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-09
    Keywords: 121-755A; Age, dated; Age, dated material; Age, dated standard deviation; Age, fission-track; Calculated; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Grains, counted/analyzed; Joides Resolution; Leg121; Lithology/composition/facies; Ocean Drilling Program; ODP; Sample code/label; South Indian Ridge, South Indian Ocean; Uranium
    Type: Dataset
    Format: text/tab-separated-values, 18 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-09
    Keywords: 165-999B; Age, dated; Age, dated material; Age, dated standard deviation; Age, fission-track; Calculated; Caribbean Sea; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Grains, counted/analyzed; Joides Resolution; Leg165; Lithology/composition/facies; Ocean Drilling Program; ODP; Sample code/label; Uranium
    Type: Dataset
    Format: text/tab-separated-values, 18 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-09
    Keywords: 129-800; Age, dated material; Calcium oxide; Calculated; Chlorine; COMPCORE; Composite Core; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DSDP/ODP/IODP sample designation; Electron microprobe (EMP); Epoch; Fluorine; Joides Resolution; Leg129; Lithology/composition/facies; Manganese oxide; North Pacific Ocean; Ocean Drilling Program; ODP; Phosphorus pentoxide; Sample code/label; Silicon dioxide; Strontium oxide; Sum
    Type: Dataset
    Format: text/tab-separated-values, 42 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-09
    Keywords: 121-755A; 129-800A; 43-386; 47-397; AGE; Age, standard deviation; Area/locality; Chlorine; Deep Sea Drilling Project; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Description; Description 2 (continued); DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Elevation of event; Epoch; Event label; Glomar Challenger; Joides Resolution; Latitude of event; Leg121; Leg129; Leg43; Leg47; Lithology/composition/facies; Longitude of event; North Atlantic/CONT RISE; North Pacific Ocean; Ocean Drilling Program; ODP; Samarium/Uranium ratio; Sample code/label; Sample code/label 2; Sample ID; South Indian Ridge, South Indian Ocean; Thorium/Uranium ratio; Uranium
    Type: Dataset
    Format: text/tab-separated-values, 274 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...