ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (3)
Collection
Language
Years
Year
  • 1
    Publication Date: 2020-02-12
    Description: The effect of organic molecules on CaCO3 crystallization, in particular on the formation of the initial amorphous calcium carbonate (ACC) phase, is poorly understood despite this knowledge being crucial for designing biomimetic compounds with specific function, strength and stability. We monitored ACC crystallization in the presence of varying concentrations of aspartic acid (ASP) and glycine (GLY). We observed an increase in ACC lifetime with increasing amino acid concentrations and showed that the amino acid molecules sorbed onto the ACC particles. However, little if any difference in composition and atomic structure or the so formed ACC was observed. Similarly, the crystallization pathway of ACC via vaterite and calcite although delayed, was only slightly affected by the added amino acids. The only exemption was at the highest tested ASP concentration where ACC formation was inhibited, The calcite crystals that formed in the presence of ASP had rounded edges and rough surfaces, features that are not observed for the pure, inorganic calcite or calcite formed in the presence of GLY. Overall, the results suggest that the amino acids affected ACC lifetime through the inhibition of crystal nucleation and growth, more so in the presence of ASP than GLY.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: The microbial ecology associated with siliceous sinters was studied in five geochemically diverse Icelandic geothermal systems. Bacterial 16S rRNA clone libraries were constructed from water-saturated precipitates from each site resulting in a total of 342 bacterial clone sequences and 43 species level phylotypes. In near-neutral, saline (2.6-4.7% salinity) geothermal waters where sinter growth varied between 10 and similar to 300 kg year(-1) m(-2), 16S rRNA gene analyses revealed very low (no OTUs could be detected) to medium (9 OTUs) microbial activity. The most dominant phylotypes found in these waters belong to marine genera of the Proteobacteria. In contrast, in alkaline (pH = 9-10), meteoric geothermal waters with temperature = 66-96A degrees C and 〈 1-20 kg year(-1)m(-2) sinter growth, extensive biofilms (a total of 34 OTUs) were observed within the waters and these were dominated by members of the class Aquificae (mostly related to Thermocrinis), Deinococci (Thermus species) as well as Proteobacteria. The observed phylogenetic diversity (i.e., number and composition of detected OTUs) is argued to be related to the physico-chemical regime prevalent in the studied geothermal waters; alkaliphilic thermophilic microbial communities with phylotypes related to heterotrophic and autotrophic microorganisms developed in alkaline high temperature waters, whereas halophilic mesophilic communities dominated coastal geothermal waters.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: Detailed knowledge of the reaction kinetics of silica nanoparticle formation in cooling supersaturated waters is fundamental to the understanding of many natural processes including biosilicifcation, sinter formation, and silica diagenesis. Here, we quantified the formation of silica nanoparticles from solution as it would occur in geothermal waters. We used an in situ and real-time approach with silica polymerisation being induced by fast cooling of a 230 degrees C hot and supersaturated silica solution. Experiments were carried out using a novel flow-through geothermal simulator system that was designed to work on-line with either a synchrotron-based small angle X-ray scattering (SAXS) or a conventional dynamic light scattering (DLS) detector system. Our results show that the rate of silica nanoparticle formation is proportional to the silica concentration (640 vs. 960 ppm SiO2), and the first detected particles form spheres of approximately 3 nm in diameter. These initial nanoparticles grow and reach a final particle diameter of approximately 7 nm. Interestingly, neither variations in ionic strength (0.02 vs. 0.06) nor temperature (reactions at 30 to 60 degrees C, mimicking Earth surface values) seem to affect the formation kinetics or the final size of the silica nanoparticles formed. Comparing these results with our previous data from experiments where silica polymerisation and nanoparticle formation was induced by a drop in pH from 12 to near neutral (pH-induced, Tobler et al., 2009) showed that (a) the mechanisms and kinetics of silica nanoparticle nucleation and growth were unaffected by the means to induce silica polymerisation (T drop or pH drop), both following first order reactions kinetics coupled with a surface controlled reaction mechanism. However, the rates of the formation of silica nanoparticles were substantially (around 50%) slower when polymerisation was induced by fast cooling as opposed to pH change. This was evidenced by the occurrence of an induction period, the formation of larger critical nuclei, and the absence of particle aggregation in the T-induced experiments. (C) 2013 Elsevier Ltd. All rights reserved.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...