ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-17
    Description: Pelagic marine carbonates provide important records of past environmental change. We carried out detailed low-temperature magnetic measurements on biogenic magnetite-bearing sediments from the Southern Ocean (Ocean Drilling Program (ODP) Holes 738B, 738C, 689D, and 690C) and on samples containing whole magnetotactic bacteria cells. We document a range of low-temperature magnetic properties, including reversible humped low-temperature cycling (LTC) curves. Different degrees of magnetite oxidation are considered to be responsible for the observed variable shapes of LTC curves. A dipole spring mechanism in magnetosome chains is introduced to explain reversible LTC curves. This dipole spring mechanism is proposed to result from the uniaxial anisotropy that originates from the chain arrangement of biogenic magnetite, similar to published results for uniaxial stable single domain (SD) particles. The dipole spring mechanism reversibly restores the remanence during warming in LTC measurements. This supports a previous idea that remanence of magnetosome chains is completely reversible during LTC experiments. We suggest that this magnetic fingerprint is a diagnostic indicator for intact magnetosome chains, although the presence of isolated uniaxial stable SD particles and magnetically interacting particles can complicate this test. Magnetic measurements through the Eocene section of ODP Hole 738B reveal an interval with distinct magnetic properties that we interpret to originate from less oxidized biogenic magnetite and enrichment of a biogenic “hard” component. Co-occurrence of these two magnetic fingerprints during the late Eocene in the Southern Ocean indicates less oxic conditions, probably due to increased oceanic primary productivity and organic carbon burial.
    Description: Published
    Description: 6049–6065
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: pelagic carbonates ; biogenic magnetite ; rock magnetism ; environmental magnetism ; ODP ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-03
    Description: Greigite (Fe3S4) is an authigenic ferrimagnetic mineral that grows as a precursor to pyrite during early diagenetic sedimentary sulfate reduction. It can also grow at any time when dissolved iron and sulfide are available during diagenesis. Greigite is important in paleomagnetic, environmental, biological, biogeochemical, tectonic, and industrial processes. Much recent progress has been made in understanding its magnetic properties. Greigite is an inverse spinel and a collinear ferrimagnet with antiferromagnetic coupling between iron in octahedral and tetrahedral sites. The crystallographic c axis is the easy axis of magnetization, with magnetic properties dominated by magnetocrystalline anisotropy. Robust empirical estimates of the saturation magnetization, anisotropy constant, and exchange constant for greigite have been obtained recently for the first time, and the first robust estimate of the low‐field magnetic susceptibility is reported here. The Curie temperature of greigite remains unknown but must exceed 350°C. Greigite lacks a low‐temperature magnetic transition. On the basis of preliminary micromagnetic modeling, the size range for stable single domain behavior is 17–200 nm for cubic crystals and 17–500 nm for octahedral crystals. Gradual variation in magnetic properties is observed through the pseudo‐single‐domain size range. We systematically document the known magnetic properties of greigite (at high, ambient, and low temperatures and with alternating and direct fields) and illustrate how grain size variations affect magnetic properties. Recognition of this range of magnetic properties will aid identification and constrain interpretation of magnetic signals carried by greigite, which is increasingly proving to be environmentally important and responsible for complex paleomagnetic records, including widespread remagnetizations.
    Description: Published
    Description: RG1002
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: greigite ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Magnetotactic bacteria intracellularly biomineralize magnetite of an ideal grain size for recording palaeomagnetic signals. However, bacterial magnetite has only been reported in a few pre-Quaternary records because progressive burial into anoxic diagenetic environments causes its dissolution. Deep-sea carbonate sequences provide optimal environments for preserving bacterial magnetite due to low rates of organic carbon burial and expanded pore-water redox zonations. Such sequences often do not become anoxic for tens to hundreds of metres below the seafloor. Nevertheless, the biogeochemical factors that control magnetotactic bacterial populations in such settings are not well known. We document the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout Eocene pelagic carbonates from the southern Kerguelen Plateau, Southern Ocean. We provide evidence that iron fertilization, associated with increased aeolian dust flux, resulted in surface water eutrophication in the late Eocene that controlled bacterial magnetite abundance via export of organic carbon to the seafloor. Increased flux of aeolian ironbearing phases also delivered iron to the seafloor, some of which became bioavailable through iron reduction. Our results suggest that magnetotactic bacterial populations in pelagic settings depend crucially on particulate iron and organic carbon delivery to the seafloor.
    Description: Published
    Description: 441-452
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Magnetotactic bacteria ; Magnetofossils ; Magnetite ; Productivity ; Iron ; Organic carbon ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Magnetic hysteresis measurements of sediments have resulted in widespread reporting of “pseudo-single-domain”-like magnetic properties. In contrast, the ideal single domain (SD) properties that would be expected to be responsible for high quality paleomagnetic records are rare. Determining whether SD particles are rare or common in sediments requires application of techniques that enable discrimination among different magnetic components in a sediment. We apply a range of such techniques and find that SD particles are much more common than has been reported in the literature and that magnetite magnetofossils (the inorganic remains of magnetotactic bacteria) are widely preserved at depth in a range of sediment types, including biogenic pelagic carbonates, lacustrine and marine clays, and possibly even in glaci-marine sediments. Thus, instead of being rarely preserved in the geological record, we find that magnetofossils are widespread. This observation has important implications for our understanding of how sediments become magnetized and highlights the need to develop a more robust basis for understanding how biogenic magnetite contributes to the magnetization of sediments. Magnetofossils also have grain sizes that are substantially smaller than the 1–15 mm size range for which there is reasonable empirical support for relative paleointensity studies. The different magnetic response of coexisting fine biogenic and coarser lithogenic particles is likely to complicate relative paleointensity studies. This issue needs much closer attention. Despite the fact that sediments have been subjected to paleomagnetic investigation for over 60 years, much remains to be understood about how they become magnetized.
    Description: Published
    Description: B08104
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: hysteresis ; magnetite ; pseudo-single domain ; single domain ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The Vrica section in Calabria, southern Italy, was the global stratotype for the Pliocene–Pleistocene boundary until this boundary was redefined in 2009. Several paleomagnetic investigations have been carried out at Vrica to determine the age of the formerly defined Pliocene–Pleistocene boundary, which was a key calibration point for the astronomical polarity timescale(APTS). Each study has documented a complex polarity pattern at and above the top of the Olduvai subchron and in relation to the existence of the so-called Vrica subchron. When constructing the APTS, two alternative interpretations for the Vrica section were proposed,neither of which could be conclusively supported. Authigenic growth of magnetic iron sulphide minerals was proposed to explain the complex magnetic polarity record. Availability of a fresh 50-m sediment core enabled us to test this possibility. Our magnetostratigraphic record is similar to that of previous studies, but it is also complex above the Olduvai subchron. We confirm abundant occurrences of authigenic greigite and pyrrhotite, along with detrital titanomagnetite. Authigenic monoclinic pyrrhotite indicates growth significantly later than deposition, and greigite can grow at any time during diagenesis, depending on the availability of dissolved iron and sulphide. The spatially variable magnetic polarity pattern at Vrica is therefore interpreted to have resulted from post-depositional magnetic iron sulphide formation at variable times. Tectonism along the Calabrian arc provides a plausible mechanism for forcing reducing fluids through the sediments, thereby supplying the dissolved ions needed to produce late diagenetic sulphide growth and remagnetization. The complex magnetostratigraphic record at Vrica was taken into account when the APTS was developed, and alternative interpretations result in a maximum age difference of 50 kyr for the upper Olduvai reversal. Our results therefore do not undermine the APTS. Rather, they explain the complex magnetic polarity pattern at this globally important location and highlight the importance of remagnetization processes in such sediments.
    Description: Published
    Description: 98-111
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Pliocene ; Pleistocene ; Vrica ; magnetostratigraphy ; Olduvai ; remagnetization ; greigite ; pyrrhotite ; methanehydrate ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We synthesize environmental magnetic results for sediments from the Victoria Land Basin (VLB), which span a total stratigraphic thickness of 2.6 km and a ~17 Myr age range. We assess how magnetic properties record paleoclimatic, tectonic, and provenance variations or mixtures of signals resulting from these processes. The magnetic properties are dominated by large-scale magnetite concentration variations. In the late Eocene and early Oligocene, magnetite concentration variations coincide with detrital smectite concentration and crystallinity variations, which reflect paleoclimatic control on magnetic properties through influence on weathering regime; high magnetite and smectite concentrations indicate warmer and wetter climates and vice versa. During the early Oligocene, accelerated uplift of the Transantarctic Mountains gave rise to magnetic signatures that reflect progressive erosion of the Precambrian-Mesozoic metamorphic, intrusive, and sedimentary stratigraphic cover succession associated with unroofing of the adjacent Transantarctic Mountains. From the early Oligocene to the early Miocene, a consistent fining upward of magnetite particles through the recovered composite record likely reflects increased physical weathering with glacial grinding contributing to progressively finer grained Ferrar Dolerite-sourced magnetite. After 24 Ma, the magnetic properties of VLB sediments are primarily controlled by the weathering and erosion of McMurdo Volcanic Group rocks; increased volcanic glass contents contribute to the fining upward of magnetite grain size. Overall, long-term magnetic property variations record the first-order geological processes that controlled sedimentation in the VLB, including paleoclimatic, tectonic, provenance, and volcanic influences.
    Description: Published
    Description: 1845–1861
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: environmental magnetism ; Antarctica ; paleoclimate ; volcanism ; Ross Sea ; Cenozoic ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Pelagic carbonates are deposited far from continents, usually at water depths of 3000–6000 m, at rates below 10 cm/kyr, and are a globally important sediment type. Recent advances, with recognition of widespread preservation of biogenic magnetite (the inorganic remains of magnetotactic bacteria), have fundamentally changed our understanding of the magnetic properties of pelagic carbonates. We review evidence for the magnetic minerals typically preserved in pelagic carbonates, the effects of magnetic mineral diagenesis on paleomagnetic and environmental magnetic records of pelagic carbonates, and what magnetic properties can tell us about the open-ocean environments in which pelagic carbonates are deposited. We also discuss briefly late diagenetic remagnetisations recorded by some carbonates. Despite recent advances in our knowledge of these phenomena, much remains undiscovered. We are only at early stages of understanding how biogenic magnetite gives rise to paleomagnetic signals in sediments and whether it carries a poorly understood biogeochemical remanent magnetisation. Recently developed techniques have potential for testing how different magnetotactic bacterial species, which produce different magnetite morphologies, respond to changing nutrient and oxygenation conditions. Future work needs to test whether it is possible to develop proxies for ancient nutrient conditions from well-calibrated modern magnetotactic bacterial occurrences. A tantalizing link between giant magnetofossils and Paleogene hyperthermal events needs to be tested; much remains to be learned about the relationship between climate and the organisms that biomineralised these large and novel magnetite morphologies. Rather than being a well-worn subject that has been studied for over 60 years, the magnetic properties of pelagic carbonates hold many secrets that await discovery.
    Description: Published
    Description: 111-139
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Pelagic carbonate ; Limestone ; Magnetic minerals ; Biogenic magnetite ; Magnetofossils ; Diagenesis ; Remagnetisation ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We present paleomagnetic, rock magnetic and scanning electron microscope data from three upper Messinian stratigraphic sections from the Adana Basin (southern Turkey). The collected samples are from fine-grained units, which were deposited during the Messinian Salinity Crisis (within subchron C3r). Paleomagnetic results reveal an inconsistent polarity record, related to a mixture of magnetite and greigite that hinders determination of a reliable magnetostratigraphy. Three classes of samples are recognized on the basis of paleomagnetic results. The first is characterized by a single magnetization component, with normal polarity, that is stable up to 530–580 C and is carried by magnetite. The second is characterized by a single magnetization component, with reversed polarity, that is stable up to 330–420 C. This magnetization is due to greigite, which developed after formation of slumps and before tectonic tilting of the studied successions. The third is characterized by reversed polarity, which is stable up to 530–580 C. We interpret this component as a primary magnetization carried by fine-grained and magnetically stable detrital magnetite. Results indicate that in the Adana Basin the assumption that a primary magnetization is carried by magnetite, and a magnetic overprint carried by greigite, does not hold because a late magnetic overprint has also been found for magnetite-bearing samples. Our data illustrate the complexity of magnetostratigraphic reconstructions in successions characterized by variable mixtures of magnetic minerals with different magnetic stability that formed at different stages. We demonstrate the need to perform detailed magnetic mineralogy analyses when conducting magnetostratigraphic studies of clay-rich sediments from marine or lacustrine environments.
    Description: Published
    Description: Q10002
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Messinian ; remagnetization ; reversals ; rock and mineral magnetism ; southern Turkey ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Iron is the fourth most common element on Earth and gives rise to the magnetic properties of rock-forming minerals. Magnetic iron minerals are, therefore, abundant and occur in almost every type of geological material. Scientific interest in the occurrence of magnetic minerals in sediments was triggered over 60 years ago by paleomagnetic and magnetostratigraphic applications that relate to the capability of these minerals to record the Earth’s magnetic field shortly after deposition, and to store this information over geological timescales (e.g. Johnson et al., 1948, King, 1955 and Irving and Major, 1964). Marine sediments are a key source of long and continuous paleomagnetic records, which are essential for reconstructing past geomagnetic field variations and for dating using global geomagnetic reversals (Ogg and Smith, 2004). Magnetic polarity stratigraphy, combined with other age determination methods, has become an essential tool in sedimentary geochronology. Important aspects of sedimentary paleomagnetism, such as the mechanism, efficiency and timing of acquisition of a natural remanent magnetization (NRM), its preservation during diagenetic processes, and possible overprinting by magnetic minerals that formed long after deposition, are intensively investigated and have not yet been fully explained (e.g. Tauxe, 2006 and Roberts et al., 2013).
    Description: Published
    Description: 259–263
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: environmental magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Accepted for publication in Reviews of Geophysics. Copyright (2010) American Geophysical Union
    Description: Greigite (Fe3S4) is an authigenic ferrimagnetic mineral that grows as a precursor to pyrite during early diagenetic sedimentary sulfate reduction. It can also grow at any time when dissolved iron and sulfide are available during diagenesis. Greigite is important in paleomagnetic, environmental, biological, biogeochemical, tectonic, and industrial processes. Much recent progress has been made in understanding its magnetic properties. Greigite is an inverse spinel and a collinear ferrimagnet with antiferromagnetic coupling between iron in octahedral and tetrahedral sites. The crystallographic c-axis is the easy axis of magnetization, with magnetic properties dominated by magnetocrystalline anisotropy. Robust empirical estimates of the saturation magnetization, anisotropy constant, and exchange constant for greigite have been obtained recently for the first time, and the first robust estimate of the low-field magnetic susceptibility is reported here. The Curie temperature of greigite remains unknown, but must exceed 350°C. Greigite lacks a low-temperature magnetic transition. Based on preliminary micromagnetic modeling, the size range for stable single domain behavior is 17-200 nm for cubic crystals and 17-500 nm for octahedral crystals. Gradual variation in magnetic properties is observed through the pseudo-single domain size range. We systematically document the known magnetic properties of greigite (at high, ambient and low temperatures, and with alternating and direct fields) and illustrate how grain size variations affect magnetic properties. Recognition of this range of magnetic properties will aid identification and constrain interpretation of magnetic signals carried by greigite, which is increasingly proving to be environmentally important and responsible for complex paleomagnetic records, including widespread remagnetizations.
    Description: In press
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: greigite ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...