ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-12-04
    Description: Although initially viewed as unregulated, increasing evidence suggests that cellular necrosis often proceeds through a specific molecular program. In particular, death ligands such as tumour necrosis factor (TNF)-alpha activate necrosis by stimulating the formation of a complex containing receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Relatively little is known regarding how this complex formation is regulated. Here, we show that the NAD-dependent deacetylase SIRT2 binds constitutively to RIP3 and that deletion or knockdown of SIRT2 prevents formation of the RIP1-RIP3 complex in mice. Furthermore, genetic or pharmacological inhibition of SIRT2 blocks cellular necrosis induced by TNF-alpha. We further demonstrate that RIP1 is a critical target of SIRT2-dependent deacetylation. Using gain- and loss-of-function mutants, we demonstrate that acetylation of RIP1 lysine 530 modulates RIP1-RIP3 complex formation and TNF-alpha-stimulated necrosis. In the setting of ischaemia-reperfusion injury, RIP1 is deacetylated in a SIRT2-dependent fashion. Furthermore, the hearts of Sirt2(-/-) mice, or wild-type mice treated with a specific pharmacological inhibitor of SIRT2, show marked protection from ischaemic injury. Taken together, these results implicate SIRT2 as an important regulator of programmed necrosis and indicate that inhibitors of this deacetylase may constitute a novel approach to protect against necrotic injuries, including ischaemic stroke and myocardial infarction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narayan, Nisha -- Lee, In Hye -- Borenstein, Ronen -- Sun, Junhui -- Wong, Renee -- Tong, Guang -- Fergusson, Maria M -- Liu, Jie -- Rovira, Ilsa I -- Cheng, Hwei-Ling -- Wang, Guanghui -- Gucek, Marjan -- Lombard, David -- Alt, Fredrick W -- Sack, Michael N -- Murphy, Elizabeth -- Cao, Liu -- Finkel, Toren -- Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 13;492(7428):199-204. doi: 10.1038/nature11700. Epub 2012 Nov 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Medicine, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23201684" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Line ; Female ; HEK293 Cells ; HeLa Cells ; Humans ; Jurkat Cells ; Male ; Mice ; Necrosis/*enzymology ; Nuclear Pore Complex Proteins/metabolism ; Protein Binding ; Receptor-Interacting Protein Serine-Threonine Kinases/metabolism ; Sirtuin 2/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-14
    Description: Withdrawal of nutrients triggers an exit from the cell division cycle, the induction of autophagy, and eventually the activation of cell death pathways. The relation, if any, among these events is not well characterized. We found that starved mouse embryonic fibroblasts lacking the essential autophagy gene product Atg7 failed to undergo cell cycle arrest. Independent of its E1-like enzymatic activity, Atg7 could bind to the tumor suppressor p53 to regulate the transcription of the gene encoding the cell cycle inhibitor p21(CDKN1A). With prolonged metabolic stress, the absence of Atg7 resulted in augmented DNA damage with increased p53-dependent apoptosis. Inhibition of the DNA damage response by deletion of the protein kinase Chk2 partially rescued postnatal lethality in Atg7(-/-) mice. Thus, when nutrients are limited, Atg7 regulates p53-dependent cell cycle and cell death pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721513/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721513/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, In Hye -- Kawai, Yoshichika -- Fergusson, Maria M -- Rovira, Ilsa I -- Bishop, Alexander J R -- Motoyama, Noboru -- Cao, Liu -- Finkel, Toren -- Z01 HL005012-12/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):225-8. doi: 10.1126/science.1218395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Medicine, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Autophagy ; Cell Cycle ; Cell Cycle Checkpoints ; Cell Line, Tumor ; Cells, Cultured ; Checkpoint Kinase 2 ; Cyclin-Dependent Kinase Inhibitor p21/genetics ; DNA Damage ; Gene Expression Regulation ; Humans ; Mice ; Microtubule-Associated Proteins/genetics/*metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/genetics ; *Stress, Physiological ; Transcription, Genetic ; Tumor Suppressor Protein p53/*metabolism ; Ubiquitin-Activating Enzymes/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...