ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-29
    Description: The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (~0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Il-Nam -- Lee, Kitack -- Gruber, Nicolas -- Karl, David M -- Bullister, John L -- Yang, Simon -- Kim, Tae-Wook -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1102-6. doi: 10.1126/science.1258396.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Environmental Sciences and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea. ; School of Environmental Sciences and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea. ktl@postech.ac.kr. ; Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland. ; Daniel K. Inouye Center for Microbial Oceanography, University of Hawaii at Manoa, 1950 East West Road, Honolulu, HI 96822, USA. ; Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration (NOAA), Seattle, WA 98115, USA. ; Ocean Circulation and Climate Research Division, Korea Institute of Ocean Science and Technology, Ansan, 426-744, Republic of Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430767" target="_blank"〉PubMed〈/a〉
    Keywords: Asia ; Humans ; Nitrates/*analysis ; Nitrogen/*analysis ; Pacific Ocean ; Phosphates/analysis ; Seawater/*chemistry ; Water Pollutants, Chemical/*analysis ; *Water Pollution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-02-01
    Description: Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon dioxide IN the Atlantic Ocean). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the three data products: merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. the Arctic Mediterranean Seas, the Atlantic and the Southern Ocean. These products have been corrected to be internally consistent. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report the details of the secondary QC (Quality Control) for salinity for this data set. Procedures of quality control – including crossover analysis between stations and inversion analysis of all crossover data – are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal consistency of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA data products are consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-01-11
    Description: Water column data of carbon and carbon-relevant parameters have been collected and merged into a new database called CARINA (CARbon IN the Atlantic). In order to provide a consistent data set, all data have been examined for systematic biases and adjusted if necessary (secondary quality control (QC)). The CARINA data set is divided into three regions: the Arctic/Nordic Seas, the Atlantic region and the Southern Ocean. Here we present the CFC data for the Atlantic region, including the chlorofluorocarbons CFC-11, CFC-12 and CFC-113 as well as carbon tetrachloride (CCl4). The methods applied for the secondary quality control, a crossover analyses, the investigation of CFC ratios in the ocean and the CFC surface saturation are presented. Based on the results, the CFC data of some cruises are adjusted by a certain factor or given a "poor'' quality flag.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-02-15
    Description: Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters have been retrieved from a large number of cruises and collected into a new database called CARINA (CARbon IN the Atlantic). These data have been merged into three sets of files, one for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). The first part of the CARINA database consists of three files, one for each CARINA region, containing the original, non-adjusted cruise data sets, including data quality flags for each measurement. These data have then been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the second part of the CARINA data product. This consists of three files, one for each CARINA region, which contain adjustments to the original data values based on recommendations from the CARINA QC procedures, along with calculated and interpolated values for some missing parameters. Here we present an overview of the QC of the CFC data for the AMS region, including the chlorofluorocarbons CFC-11, CFC-12 and CFC-113, as well as carbon tetrachloride (CCl4). The Arctic Mediterranean Seas is comprised of the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. For the secondary QC of the CFCs we used a combination of tools, including the evaluation of depth profiles and CFC ratios, surface saturations and a crossover analysis. This resulted in a multiplicative adjustment of data from some cruises, while other data were flagged to be of questionable quality, which excluded them from the final data product.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-06-05
    Description: The cycling and transport of dissolved silicon (Si) in the ocean may be traced by its stable isotope composition, δ30Si. We present a dataset of δ30Si values along 103° W in the eastern South Pacific Ocean, ranging from the Antarctic Zone of the Southern Ocean (62° S) to the equatorial Pacific (12° S). At high southern latitudes, the uptake and associated isotope fractionation of Si by diatoms results in highly elevated δ30Si values (up to +3.2 ‰) in the summer mixed layer. The efficient export of diatom opal to depths inaccessible to annual winter convection is reflected by high δ30Si values (+2 ‰) preserved in high-latitude winter mixed layers. These elevated δ30Si values are introduced into the ocean interior by the subduction of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW), whose northward spreading results in a strong isopycnal control on lower-thermocline and intermediate δ30Si values in the well-ventilated eastern South Pacific. Values of δ30Si are strongly conserved along SAMW and AAIW density levels as far north as 26° S, documenting the importance of the export of preformed Si from the surface Southern Ocean to lower latitudes. In contrast, in the equatorial Pacific, depressed δ30Si values in the mesopelagic ocean are observed, most likely documenting the combined influence of a North Pacific Si source as well as the accumulation of remineralized Si within the eastern equatorial Pacific shadow zone. At depth, δ30Si values in the South Pacific remain indistinguishable from deep Southern Ocean values of +1.25 ‰, even within Si-rich and oxygen-poor deep waters returning from the North Pacific. This homogeneity implies that the dissolution of opal plays a negligible role in altering the δ30Si value of deep waters as they traverse the deep Pacific Ocean.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-11-01
    Description: The cycling and transport of dissolved silicon (Si) in the ocean may be traced by its stable isotope composition, δ30Si. We present a dataset of δ30Si values along 103° W in the eastern South Pacific Ocean, ranging from the Antarctic Zone of the Southern Ocean (62° S) to the equatorial Pacific (12° S). At high southern latitudes, the uptake and associated isotope fractionation of Si by diatoms results in highly elevated δ30Si values (up to +3.2‰) in the summer mixed layer. High δ30Si values (+2‰) are also preserved in the high-latitude fossil winter mixed layer, documenting the efficient export of diatom opal beyond the maximum depth of winter convection. This elevated winter mixed layer δ30Si signature is introduced into the ocean interior by the subduction of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW), whose northward spreading results in a strong isopycnal control on lower-thermocline and intermediate δ30Si values in the well-ventilated eastern South Pacific. Values of δ30Si are strongly conserved along SAMW and AAIW density levels as far north as 26° S, documenting the importance of the export of preformed Si from the surface Southern Ocean to lower latitudes. In contrast, in the equatorial Pacific, depressed δ30Si values in the mesopelagic ocean are observed, most likely documenting the combined influence of a North Pacific Si source as well as the accumulation of remineralized Si within the eastern equatorial Pacific shadow zone. At depth, δ30Si values in the South Pacific remain indistinguishable from deep Southern Ocean values of +1.25‰, even within Si-rich and oxygen-poor deep waters returning from the North Pacific. This homogeneity implies that the dissolution of opal plays a negligible role in altering the δ30Si value of deep waters as they traverse the deep Pacific Ocean.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    GO-SHIP (Unesco/IOC)
    In:  In: GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines. IOCCP Report , 14 . GO-SHIP (Unesco/IOC), Paris, France, pp. 1-11.
    Publication Date: 2012-07-06
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-16
    Description: Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruise data sets in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon dioxide IN the Atlantic Ocean). The data have gone through rigorous quality control procedures to assure the highest possible quality and consistency. The data for the pertinent parameters in the CARINA database were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the three data products: merged data files with measured, calculated and interpolated data for each of the three CARINA regions, i.e. the Arctic Mediterranean Seas, the Atlantic and the Southern Ocean. These products have been corrected to be internally consistent. Ninety-eight of the cruises in the CARINA database were conducted in the Atlantic Ocean, defined here as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we present an overview of the Atlantic Ocean synthesis of the CARINA data and the adjustments that were applied to the data product. We also report the details of the secondary QC (Quality Control) for salinity for this data set. Procedures of quality control – including crossover analysis between stations and inversion analysis of all crossover data – are briefly described. Adjustments to salinity measurements were applied to the data from 10 cruises in the Atlantic Ocean region. Based on our analysis we estimate the internal consistency of the CARINA-ATL salinity data to be 4.1 ppm. With these adjustments the CARINA data products are consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 2 . pp. 79-97.
    Publication Date: 2019-09-23
    Description: Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters have been retrieved from a large number of cruises and collected into a new database called CARINA (CARbon IN the Atlantic). These data have been merged into three sets of files, one for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). The first part of the CARINA database consists of three files, one for each CARINA region, containing the original, non-adjusted cruise data sets, including data quality flags for each measurement. These data have then been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the second part of the CARINA data product. This consists of three files, one for each CARINA region, which contain adjustments to the original data values based on recommendations from the CARINA QC procedures, along with calculated and interpolated values for some missing parameters. Here we present an overview of the QC of the CFC data for the AMS region, including the chlorofluorocarbons CFC-11, CFC-12 and CFC-113, as well as carbon tetrachloride (CCl4). The Arctic Mediterranean Seas is comprised of the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. For the secondary QC of the CFCs we used a combination of tools, including the evaluation of depth profiles and CFC ratios, surface saturations and a crossover analysis. This resulted in a multiplicative adjustment of data from some cruises, while other data were flagged to be of questionable quality, which excluded them from the final data product.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 2 (1). pp. 1-15.
    Publication Date: 2019-09-23
    Description: Water column data of carbon and carbon-relevant parameters have been collected and merged into a new database called CARINA (CARbon IN the Atlantic). In order to provide a consistent data set, all data have been examined for systematic biases and adjusted if necessary (secondary quality control (QC)). The CARINA data set is divided into three regions: the Arctic/Nordic Seas, the Atlantic region and the Southern Ocean. Here we present the CFC data for the Atlantic region, including the chlorofluorocarbons CFC-11, CFC-12 and CFC-113 as well as carbon tetrachloride (CCl4). The methods applied for the secondary quality control, a crossover analyses, the investigation of CFC ratios in the ocean and the CFC surface saturation are presented. Based on the results, the CFC data of some cruises are adjusted by a certain factor or given a “poor” quality flag.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...