ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (5)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: The objective of the HIAD Mission Applications Study is to quantify the benefits of HIAD infusion to the concept of operations of high priority exploration missions. Results of the study will identify the range of mission concepts ideally suited to HIADs and provide mission-pull to associated technology development programs while further advancing operational concepts associated with HIAD technology. A summary of Year 1 modeling and analysis results is presented covering missions focusing on Earth and Mars-based applications. Recommended HIAD scales are presented for near term and future mission opportunities and the associated environments (heating and structural loads) are described.
    Keywords: Aerodynamics
    Type: NF1676L-16189 , 22nd AIAA Aerodynamic Decelerator Systems Technology Conference; Mar 25, 2013 - Mar 28, 2013; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-11508 , 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar; May 23, 2011 - May 26, 2011; Dublin; Ireland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: The Inflatable Reentry Vehicle Experiment II launched August 17, 2009, from NASA Wallops Flight Facility. The three mission objectives were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for comparison with analysis and design techniques used in vehicle development. The flight was a complete success, with the re-entry vehicle separating cleanly from the launcher, inflating as planned, and demonstrating stable flight through reentry and descent while on-board systems telemetered video and flight performance data to the ground.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-10402 , International Planetary Probe Workshop 2010 (IPPW-7); Jun 14, 2010 - Jun 18, 2010; Barcelona, Spain; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The suite of Inflatable Re-Entry Vehicle Experiments (IRVE) is designed to further our knowledge and understanding of Hypersonic Inflatable Aerodynamic Decelerators (HIADs). Before infusion into a future mission, three challenges need to be addressed: surviving the heat pulse during re-entry, demonstrating system performance at relevant scales, and demonstrating controllability in the atmosphere. IRVE-4 will contribute to a better understanding of controllability by characterizing how a HIAD responds to a set of controlled inputs. The ability to control a HIAD is vital for missions that are g-limited, require precision targeting and guidance for aerocapture or entry, descent, and landing. The IRVE-4 flight test will focus on taking a first look into controlling a HIAD. This paper will give an overview of the IRVE-4 mission including the control response portion of the flight test sequence, and will provide a review of the mission s development.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-11478 , 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar; May 23, 2011 - May 26, 2011; Dublin; Ireland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-10183 , AIAA Atmospheric Flight Mechanics Conference; Aug 02, 2010 - Aug 05, 2010; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...