ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • 2010-2014  (4)
  • 1
    Publication Date: 2019-07-13
    Description: The recent Titan Saturn System Mission (TSSM) proposal incorporates a montgolfiere (hot air balloon) as part of its architecture. Standard montgolfiere balloons generate lift through heating of the atmospheric gases inside the envelope, and use a vent valve for altitude control. A Titan aerobot (robotic aerial vehicle) would have to use radioisotope thermoelectric generators (RTGs) for electric power, and the excess heat generated can be used to provide thermal lift for a montgolfiere. A hybrid montgolfiere design could have propellers mounted on the gondola to generate horizontal thrust; in spite of the unfavorable aerodynamic drag caused by the shape of the balloon, a limited amount of lateral controllability could be achieved. In planning an aerial mission at Titan, it is extremely important to assess how the moon-wide wind field can be used to extend the navigation capabilities of an aerobot and thereby enhance the scientific return of the mission. In this paper we explore what guidance, navigation and control capabilities can be achieved by a vehicle that uses the Titan wind field. The control planning approach is based on passive wind field riding. The aerobot would use vertical control to select wind layers that would lead it towards a predefined science target, adding horizontal propulsion if available. The work presented in this paper is based on aerodynamic models that characterize balloon performance at Titan, and on TitanWRF (Weather Research and Forecasting), a model that incorporates heat convection, circulation, radiation, Titan haze properties, Saturn's tidal forcing, and other planetary phenomena. Our results show that a simple unpropelled montgolfiere without horizontal actuation will be able to reach a broad array of science targets within the constraints of the wind field. The study also indicates that even a small amount of horizontal thrust allows the balloon to reach any area of interest on Titan, and to do so in a fraction of the time needed by the unpropelled balloon. The results show that using the Titan wind field allows an aerobot to significantly extend its scientific reach, and that a montgolfiere (unpropelled or propelled) is a highly desirable architecture that can very significantly enhance the scientific return of a future Titan mission.
    Keywords: Spacecraft Design, Testing and Performance; Lunar and Planetary Science and Exploration
    Type: 2010 IEEE Aerospace Conference; Mar 06, 2010 - Mar 13, 2010; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-21
    Description: The seasonal succession of plankton is an annually repeated process of community assembly during which all major external factors and internal interactions shaping communities can be studied. A quarter of a century ago, the state of this understanding was described by the verbal plankton ecology group (PEG) model. It emphasized the role of physical factors, grazing and nutrient limitation for phytoplankton, and the role of food limitation and fish predation for zooplankton. Although originally targeted at lake ecosystems, it was also adopted by marine plankton ecologists. Since then, a suite of ecological interactions previously underestimated in importance have become research foci: overwintering of key organisms, the microbial food web, parasitism, and food quality as a limiting factor and an extended role of higher order predators. A review of the impact of these novel interactions on plankton seasonal succession reveals limited effects on gross seasonal biomass patterns, but strong effects on species replacements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: 1. Different components of the climate system have been shown to affect temporal dynamics in natural plankton communities on scales varying from days to years. The seasonal dynamics in temperate lake plankton communities, with emphasis on both physical and biological forcing factors, were captured in the 1980s in a conceptual framework, the Plankton Ecology Group (PEG) model. 2. Taking the PEG model as our starting point, we discuss anticipated changes in seasonal and long-term plankton dynamics and extend this model to other climate regions, particularly polar and tropical latitudes. Based on our improved post-PEG understanding of plankton dynamics, we also evaluate the role of microbial plankton, parasites and fish in governing plankton dynamics and distribution. 3. In polar lakes, there is usually just a single peak in plankton biomass in summer. Lengthening of the growing season under warmer conditions may lead to higher and more prolonged phytoplankton productivity. Climate-induced increases in nutrient loading in these oligotrophic waters may contribute to higher phytoplankton biomass and subsequent higher zooplankton and fish productivity. 4. In temperate lakes, a seasonal pattern with two plankton biomass peaks – in spring and summer – can shift to one with a single but longer and larger biomass peak as nutrient loading increases, with associated higher populations of zooplanktivorous fish. Climate change will exacerbate these trends by increasing nutrient loading through increased internal nutrient inputs (due to warming) and increased catchment inputs (in the case of more precipitation). 5. In tropical systems, temporal variability in precipitation can be an important driver of the seasonal development of plankton. Increases in precipitation intensity may reset the seasonal dynamics of plankton communities and favour species adapted to highly variable environments. The existing intense predation by fish on larger zooplankters may increase further, resulting in a perennially low zooplankton biomass. 6. Bacteria were not included in the original PEG model. Seasonally, bacteria vary less than the phytoplankton but often follow its patterns, particularly in colder lakes. In warmer lakes, and with future warming, a greater influx of allochthonous carbon may obscure this pattern. 7. Our analyses indicate that the consequences of climate change for plankton dynamics are, to a large extent, system specific, depending on characteristics such as food-web structure and nutrient loading. Indirect effects through nutrient loading may be more important than direct effects of temperature increase, especially for phytoplankton. However, with warming a general picture emerges of increases in bacterivory, greater cyanobacterial dominance and smaller-bodied zooplankton that are more heavily impacted by fish predation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Summary - In our recent contribution to the special issue on plankton dynamics in a fast-changing world, we outlined some general predictions of plankton dynamics in different climate regions now and in future, building on the Plankton Ecology Group (PEG) model (de Senerpont Domis et al., 2013). - We proposed a stylised version of plankton dynamics in Fig. 3 of our article and stated that these patterns need to be further elaborated. Our figure displays annual plankton dynamics now and in future in oligotrophic, mesotrophic and eutrophic lakes in arctic, temperate and tropical climate zones. - We fully agree with Sarmento, Amado & Descy (2013) that more data on tropical regions are needed, and we are looking forward to the emergence of published data from tropical regions to extend our still-limited understanding of plankton dynamics in these regions. - Sarmento et al. (2013) did not agree with our predictions on plankton dynamics for hydrology-driven water systems in the tropics. Unfortunately, however, Sarmento et al. (2013) did not substantiate their statements with the much-needed data on plankton dynamics in the tropics. Moreover, they merely provide an overview of precipitation patterns in the tropics, not an alternative hypothesis for our predictions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...