ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-07-11
    Description: Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, Hong -- Morey, Robert -- O'Neil, Ryan C -- He, Yupeng -- Daughtry, Brittany -- Schultz, Matthew D -- Hariharan, Manoj -- Nery, Joseph R -- Castanon, Rosa -- Sabatini, Karen -- Thiagarajan, Rathi D -- Tachibana, Masahito -- Kang, Eunju -- Tippner-Hedges, Rebecca -- Ahmed, Riffat -- Gutierrez, Nuria Marti -- Van Dyken, Crystal -- Polat, Alim -- Sugawara, Atsushi -- Sparman, Michelle -- Gokhale, Sumita -- Amato, Paula -- Wolf, Don P -- Ecker, Joseph R -- Laurent, Louise C -- Mitalipov, Shoukhrat -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 10;511(7508):177-83. doi: 10.1038/nature13551. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [3]. ; 1] Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA [2]. ; 1] Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Bioinformatics Program, University of California at San Diego, La Jolla, California 92093, USA. ; 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA. ; Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Reproductive Medicine, University of California, San Diego, Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, USA. ; 1] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [2] Department of Obstetrics and Gynecology, South Miyagi Medical Center, Shibata-gun, Miyagi 989-1253, Japan (M.T.); Department of Cell and Molecular Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden (A.P.). ; Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA. ; University Pathologists LLC, Boston University School of Medicine, Roger Williams Medical Center, Providence, Rhode Island 02118, USA. ; Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA. ; 1] Genomic Analysis Laboratory, the Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, the Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; 1] Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 Southwest Bond Avenue, Portland, Oregon 97239, USA [2] Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA [3] Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25008523" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; *Cellular Reprogramming ; Chromosome Aberrations ; Chromosomes, Human, X/genetics/metabolism ; DNA Copy Number Variations ; DNA Methylation ; Genome-Wide Association Study ; Genomic Imprinting ; Humans ; Nuclear Transfer Techniques/standards ; Pluripotent Stem Cells/cytology/*metabolism ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-12
    Description: Touch sensation is essential for behaviours ranging from environmental exploration to social interaction; however, the underlying mechanisms are largely unknown. In Drosophila larvae, two types of sensory neurons, class III and class IV dendritic arborization neurons, tile the body wall. The mechanotransduction channel PIEZO in class IV neurons is essential for sensing noxious mechanical stimuli but is not involved in gentle touch. On the basis of electrophysiological-recording, calcium-imaging and behavioural studies, here we report that class III dendritic arborization neurons are touch sensitive and contribute to gentle-touch sensation. We further identify NOMPC (No mechanoreceptor potential C), a member of the transient receptor potential (TRP) family of ion channels, as a mechanotransduction channel for gentle touch. NOMPC is highly expressed in class III neurons and is required for their mechanotransduction. Moreover, ectopic NOMPC expression confers touch sensitivity to the normally touch-insensitive class IV neurons. In addition to the critical role of NOMPC in eliciting gentle-touch-mediated behavioural responses, expression of this protein in the Drosophila S2 cell line also gives rise to mechanosensitive channels in which ion selectivity can be altered by NOMPC mutation, indicating that NOMPC is a pore-forming subunit of a mechanotransduction channel. Our study establishes NOMPC as a bona fide mechanotransduction channel that satisfies all four criteria proposed for a channel to qualify as a transducer of mechanical stimuli and mediates gentle-touch sensation. Our study also suggests that different mechanosensitive channels may be used to sense gentle touch versus noxious mechanical stimuli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917554/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917554/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Zhiqiang -- Zhang, Wei -- He, Ye -- Gorczyca, David -- Xiang, Yang -- Cheng, Li E -- Meltzer, Shan -- Jan, Lily Yeh -- Jan, Yuh Nung -- 5R01MH084234/MH/NIMH NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 MH084234/MH/NIMH NIH HHS/ -- R37 NS040929/NS/NINDS NIH HHS/ -- R37NS040929/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jan 10;493(7431):221-5. doi: 10.1038/nature11685. Epub 2012 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23222543" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Dendrites/physiology ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/cytology/growth & development/*physiology ; Larva/cytology/physiology ; Mechanotransduction, Cellular/*physiology ; Molecular Sequence Data ; Mutation ; Protein Subunits/chemistry/genetics/*metabolism ; Sequence Alignment ; Touch/*physiology ; Transient Receptor Potential Channels/chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...