ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (27)
  • National Academy of Sciences
  • Wiley-Blackwell
  • 2010-2014  (27)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2012-02-09
    Description: SCIAMACHY onboard ENVISAT (launched in 2002) enables the retrieval of global long-term column-averaged dry air mole fractions of the two most important anthropogenic greenhouse gases carbon dioxide and methane (denoted XCO2 and XCH4). In order to assess the quality of the greenhouse gas data obtained with the recently introduced v2 of the scientific retrieval algorithm WFM-DOAS, we present validations with ground-based Fourier Transform Spectrometer (FTS) measurements and comparisons with model results at eight Total Carbon Column Observing Network (TCCON) sites providing realistic error estimates of the satellite data. Such validation is a prerequisite to assess the suitability of data sets for their use in inverse modelling. It is shown that there are generally no significant differences between the carbon dioxide annual increases of SCIAMACHY and the assimilation system CarbonTracker (2.00 ± 0.16 ppm yr−1 compared to 1.94 ± 0.03 ppm yr−1 on global average). The XCO2 seasonal cycle amplitudes derived from SCIAMACHY are typically larger than those from TCCON which are in turn larger than those from CarbonTracker. The absolute values of the northern hemispheric TCCON seasonal cycle amplitudes are closer to SCIAMACHY than to CarbonTracker and the corresponding differences are not significant when compared with SCIAMACHY, whereas they can be significant for a subset of the analysed TCCON sites when compared with CarbonTracker. At Darwin we find discrepancies of the seasonal cycle derived from SCIAMACHY compared to the other data sets which can probably be ascribed to occurrences of undetected thin clouds. Based on the comparison with the reference data, we conclude that the carbon dioxide data set can be characterised by a regional relative precision (mean standard deviation of the differences) of about 2.2 ppm and a relative accuracy (standard deviation of the mean differences) of 1.1–1.2 ppm for monthly average composites within a radius of 500 km. For methane, prior to November 2005, the regional relative precision amounts to 12 ppb and the relative accuracy is about 3 ppb for monthly composite averages within the same radius. The loss of some spectral detector pixels results in a degradation of performance thereafter in the spectral range currently used for the methane column retrieval. This leads to larger scatter and lower XCH4 values are retrieved in the tropics for the subsequent time period degrading the relative accuracy. As a result, the overall relative precision is estimated to be 17 ppb and the relative accuracy is in the range of about 10–20 ppb for monthly averages within a radius of 500 km. The derived estimates show that the SCIAMACHY XCH4 data set before November 2005 is suitable for regional source/sink determination and regional-scale flux uncertainty reduction via inverse modelling worldwide. In addition, the XCO2 monthly data potentially provide valuable information in continental regions, where there is sparse sampling by surface flask measurements.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-04
    Description: Urban areas, which are home to the majority of today's world population, are responsible for more than two-thirds of the global energy-related carbon dioxide emissions. Given the ongoing demographic growth and rising energy consumption in metropolitan regions particularly in the developing world, urban-based emissions are expected to further increase in the future. As a consequence, monitoring and independent verification of reported anthropogenic emissions is becoming more and more important. It is demonstrated using SCIAMACHY nadir measurements that anthropogenic CO2 emissions can be detected from space and that emission trends might be tracked using satellite observations. This is promising with regard to future satellite missions with high spatial resolution and wide swath imaging capability aiming at constraining anthropogenic emissions down to the point-source scale. By subtracting retrieved background values from those retrieved over urban areas we find significant CO2 enhancements for several anthropogenic source regions, namely 1.3 ± 0.7 ppm for the Rhine-Ruhr metropolitan region and the Benelux, 1.1 ± 0.5 ppm for the East Coast of the United States, and 2.4 ± 0.9 ppm for the Yangtze River Delta. The order of magnitude of the enhancements is in agreement with what is expected for anthropogenic CO2 signals. The larger standard deviation of the retrieved Yangtze River Delta enhancement is due to a distinct positive trend of 0.3 ± 0.2 ppm yr−1, which is quantitatively consistent with anthropogenic emissions from the Emission Database for Global Atmospheric Research (EDGAR) in terms of percentual increase per year. Potential contributions to the retrieved CO2 enhancement by several error sources, e.g. aerosols, albedo, and residual biospheric signals due to heterogeneous seasonal sampling, are discussed and can be ruled out to a large extent.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-15
    Description: We analyze an ensemble of seven XCO2 retrieval algorithms for SCIAMACHY (scanning imaging absorption spectrometer of atmospheric chartography) and GOSAT (greenhouse gases observing satellite). The ensemble spread can be interpreted as regional uncertainty and can help to identify locations for new TCCON (total carbon column observing network) validation sites. Additionally, we introduce the ensemble median algorithm EMMA combining individual soundings of the seven algorithms into one new data set. The ensemble takes advantage of the algorithms' independent developments. We find ensemble spreads being often 〈 1 ppm but rising up to 2 ppm especially in the tropics and East Asia. On the basis of gridded monthly averages, we compare EMMA and all individual algorithms with TCCON and CarbonTracker model results (potential outliers, north/south gradient, seasonal (peak-to-peak) amplitude, standard deviation of the difference). Our findings show that EMMA is a promising candidate for inverse modeling studies. Compared to CarbonTracker, the satellite retrievals find consistently larger north/south gradients (by 0.3–0.9 ppm) and seasonal amplitudes (by 1.5–2.0 ppm).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-28
    Description: Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases contributing to global climate change. SCIAMACHY onboard ENVISAT (launch 2002) was the first and is now with TANSO onboard GOSAT (launch 2009) one of only two satellite instruments currently in space whose measurements are sensitive to CO2 and CH4 concentration changes in the lowest atmospheric layers where the variability due to sources and sinks is largest. We present long-term SCIAMACHY retrievals (2003–2009) of column-averaged dry air mole fractions of both gases (denoted XCO2 and XCH4) derived from absorption bands in the near-infrared/shortwave-infrared (NIR/SWIR) spectral region focusing on large-scale features. The results are obtained using an upgraded version (v2) of the retrieval algorithm WFM-DOAS including several improvements, while simultaneously maintaining its high processing speed. The retrieved mole fractions are compared to global model simulations (CarbonTracker XCO2 and TM5 XCH4) being optimised by assimilating highly accurate surface measurements from the NOAA/ESRL network and taking the SCIAMACHY averaging kernels into account. The comparisons address seasonal variations and long-term characteristics. The steady increase of atmospheric carbon dioxide primarily caused by the burning of fossil fuels can be clearly observed with SCIAMACHY globally. The retrieved global annual mean XCO2 increase agrees with CarbonTracker within the error bars (1.80±0.13 ppm yr−1 compared to 1.81±0.09 ppm yr−1). The amplitude of the XCO2 seasonal cycle as retrieved by SCIAMACHY, which is 4.3±0.2 ppm for the Northern Hemisphere and 1.4±0.2 ppm for the Southern Hemisphere, is on average about 1 ppm larger than for CarbonTracker. An investigation of the boreal forest carbon uptake during the growing season via the analysis of longitudinal gradients shows good agreement between SCIAMACHY and CarbonTracker concerning the overall magnitude of the gradients and their annual variations. The analysis includes a discussion of the relative uptake strengths of the Russian and North American boreal forest regions. The retrieved XCH4 results show that after years of stability, atmospheric methane has started to rise again in recent years which is consistent with surface measurements. The largest increase is observed for the tropics and northern mid- and high-latitudes amounting to about 7.5±1.5 ppb yr−1 since 2007. Due care has been exercised to minimise the influence of detector degradation on the quantitative estimate of this anomaly.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-06
    Description: Urban areas, which are home to the majority of today's world population, are responsible for more than two-thirds of the global energy-related carbon dioxide emissions. Given the ongoing demographic growth and rising energy consumption in metropolitan regions particularly in the developing world, urban-based emissions are expected to further increase in the future. As a consequence, monitoring and independent verification of reported anthropogenic emissions is becoming more and more important. It is demonstrated using SCIAMACHY nadir measurements that anthropogenic CO2 emissions can be detected from space and that emission trends might be tracked using satellite observations. This is promising with regard to future satellite missions with high spatial resolution and wide swath imaging capability aiming at constraining anthropogenic emissions down to the point-source scale. By subtracting retrieved background values from those retrieved over urban areas we find significant CO2 enhancements for several anthropogenic source regions, namely 1.3 ± 0.7 ppm for the Rhine-Ruhr metropolitan region and the Benelux, 1.1 ± 0.5 ppm for the East Coast of the United States, and 2.4 ± 0.9 ppm for the Yangtze River Delta. The order of magnitude of the enhancements is in agreement with what is expected for anthropogenic CO2 signals. The larger standard deviation of the retrieved Yangtze River Delta enhancement is due to a distinct positive trend of 0.3 ± 0.2 ppm yr−1, which is quantitatively consistent with anthropogenic emissions from the Emission Database for Global Atmospheric Research (EDGAR) in terms of percentual increase per year. Potential contributions to the retrieved CO2 enhancement by several error sources, e.g. aerosols, albedo, and residual biospheric signals due to heterogeneous seasonal sampling, are discussed and can be ruled out to a large extent.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-26
    Description: Current knowledge about the European terrestrial biospheric carbon sink, from the Atlantic to the Urals, relies upon bottom-up inventory and surface flux inverse model estimates (e.g., 0.27 ± 0.16 Gt C a−1 for 2000–2005 5 (Schulze et al., 2009), 0.17 ± 0.44 Gt C a−1 for 2001–2007 (Peters et al., 2010), 0.45 ± 0.40 Gt C a−1 for 2010 (Chevallier et al., 2014), 0.40 ± 0.42 Gt C a−1 for 2001–2004 (Peylin et al., 2013). Inverse models assimilate in situ CO2 atmospheric concentrations measured by surface-based air sampling networks. The intrinsic sparseness of these networks is one reason for the relatively large flux uncertainties (Peters et al., 2010; Bruhwiler et al., 2011). Satellite-based CO2 measurements have the potential to reduce these uncertainties (Miller et al., 2007; Chevallier et al., 2007). Global inversion experiments using independent models and independent GOSAT satellite data products consistently derived a considerably larger European sink (0.9–1.2 Gt C a−1 for September 2009–August 2010 (Basu et al., 2013), 1.2–1.8 Gt C a−1 in 2010, Chevallier et al., 2014). However, these results have been considered unrealistic due to potential large scale retrieval biases and/or long-range transport errors (Chevallier et al., 2014) or have not been discussed at all (Basu et al., 2013; Takagi et al., 2014). Here we show that the satellite-derived European terrestrial carbon sink is indeed much larger (1.02 ± 0.30 Gt C a−1 in 2010) than previously expected. Our analysis comprises a regional inversion approach using STILT (Gerbig et al., 2003; Lin et al., 2003) short range (days) particle dispersion modelling, rendering it insensitive to large scale retrieval biases and less sensitive to long-range transport errors. The highest gain in information is obtained during the growing season when satellite observation conditions are advantageous and a priori uncertainties are largest. The consistency among an ensemble of five different inversion set-ups and five independent satellite retrievals (BESD (Reuter et al., 2011) 2003–2010, ACOS (O’Dell et al., 2012) 2010, UoL-FP (Cogan et al., 2012) 2010, RemoTeC C (Butz et al., 2011) 2010, and NIES (Yoshida et al., 2013) 2010) using data from two different instruments (SCIAMACHY, Bovensmann et al., 1999 and GOSAT, Kuze et al., 2009) provides evidence that our current understanding of the European carbon sink has to be revisited.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-30
    Description: The terrestrial biosphere is currently acting as a net carbon sink on the global scale exhibiting significant interannual variability in strength. To reliably predict the future strength of the land sink and its role in atmospheric CO2 growth the underlying processes and their response to a changing climate need to be well understood. In particular, better knowledge of the impact of key climate variables like temperature or precipitation on the biospheric carbon reservoir is essential. It is demonstrated using nearly a decade of SCIAMACHY nadir measurements that years with higher temperatures during the growing season can be robustly associated with larger growth rates in atmospheric CO2 and smaller seasonal cycle amplitudes for northern mid-latitudes. We find linear relationships between warming and CO2 growth as well as seasonal cycle amplitude at the 98% significance level. This suggests that the terrestrial carbon sink is less efficient at higher temperatures, which might lead to future sink saturation via a positive carbon-climate feedback. Quantitatively, the covariation between the annual CO2 growth rates derived from SCIAMACHY data and warm season surface temperature anomaly amounts to 1.25±0.32 ppm yr−1 K−1 for the Northern Hemisphere where the bulk of the terrestrial carbon sink is located. In comparison, the relation is less pronounced in the Southern Hemisphere. The covariation of the seasonal cycle amplitudes derived from satellite and temperature anomaly is −1.30±0.31 ppm K−1 for the north temperate zone. These estimates are consistent with those from the CarbonTracker data assimilated CO2 data product indicating that the temperature dependence of the model surface fluxes is realistic.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-04-17
    Description: Carbon dioxide (CO2) is the most important greenhouse gas whose atmospheric loading has been significantly increased by anthropogenic activity leading to global warming. Accurate measurements and models are needed in order to reliably predict our future climate. This, however, has challenging requirements. Errors in measurements and models need to be identified and minimised. In this context, we present a comparison between satellite-derived column-averaged dry air mole fractions of CO2, denoted XCO2, retrieved from SCIAMACHY/ENVISAT using the WFM-DOAS algorithm, and output from NOAA's global CO2 modelling and assimilation system CarbonTracker. We investigate to what extent differences between these two data sets are influenced by systematic retrieval errors due to aerosols and unaccounted clouds. We analyse seven years of SCIAMACHY WFM-DOAS version 2.1 retrievals (WFMDv2.1) using the latest version of CarbonTracker (version 2010). We investigate to what extent the difference between SCIAMACHY and CarbonTracker XCO2 are temporally and spatially correlated with global aerosol and cloud data sets. For this purpose, we use a global aerosol data set generated within the European GEMS project, which is based on assimilated MODIS satellite data. For clouds, we use a data set derived from CALIOP/CALIPSO. We find significant correlations of the SCIAMACHY minus CarbonTracker XCO2 difference with thin clouds over the Southern Hemisphere. The maximum temporal correlation we find for Darwin, Australia (r2 = 54%). Large temporal correlations with thin clouds are also observed over other regions of the Southern Hemisphere (e.g. 43% for South America and 31% for South Africa). Over the Northern Hemisphere the temporal correlations are typically much lower. An exception is India, where large temporal correlations with clouds and aerosols have also been found. For all other regions the temporal correlations with aerosol are typically low. For the spatial correlations the picture is less clear. They are typically low for both aerosols and clouds, but dependent on region and season, they may exceed 30% (the maximum value of 46% has been found for Darwin during September to November). Overall we find that the presence of thin clouds can potentially explain a significant fraction of the difference between SCIAMACHY WFMDv2.1 XCO2 and CarbonTracker over the Southern Hemisphere. Aerosols appear to be less of a problem. Our study indicates that the quality of the satellite derived XCO2 will significantly benefit from a reduction of scattering related retrieval errors at least for the Southern Hemisphere.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-09-07
    Description: We analyze an ensemble of seven XCO2 retrieval algorithms for SCIAMACHY and GOSAT. The ensemble spread can be interpreted as regional uncertainty and can help to identify locations for new TCCON validation sites. Additionally, we introduce the ensemble median algorithm EMMA combining individual soundings of the seven algorithms into one new dataset. The ensemble takes advantage of the algorithms' independent developments. We find ensemble spreads being often
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-12
    Description: Carbon dioxide (CO2) is the most important man-made greenhouse gas (GHG) that cause global warming. With electricity generation through fossil-fuel power plants now as the economic sector with the largest source of CO2, power plant emissions monitoring has become more important than ever in the fight against global warming. In a previous study done by Bovensmann et al. (2010), random and systematic errors of power plant CO2 emissions have been quantified using a single overpass from a proposed CarbonSat instrument. In this study, we quantify errors of power plant annual emission estimates from a hypothetical CarbonSat and constellations of several CarbonSats while taking into account that power plant CO2 emissions are time-dependent. Our focus is on estimating systematic errors arising from the sparse temporal sampling as well as random errors that are primarily dependent on wind speeds. We used hourly emissions data from the US Environmental Protection Agency (EPA) combined with assimilated and re-analyzed meteorological fields from the National Centers of Environmental Prediction (NCEP). CarbonSat orbits were simulated as a sun-synchronous low-earth orbiting satellite (LEO) with an 828-km orbit height, local time ascending node (LTAN) of 13:30 (01:30 p.m.) and achieves global coverage after 5 days. We show, that despite the variability of the power plant emissions and the limited satellite overpasses, one CarbonSat can verify reported US annual CO2 emissions from large power plants (≥5 Mt CO2 yr−1) with a systematic error of less than ~4.9 % for 50 % of all the power plants. For 90 % of all the power plants, the systematic error was less than ~12.4 %. We additionally investigated two different satellite configurations using a combination of 5 CarbonSats. One achieves global coverage everyday but only samples the targets at fixed local times. The other configuration samples the targets five times at two-hour intervals approximately every 6th day but only achieves global coverage after 5 days. From the statistical analyses, we found, as expected, that the random errors improve by approximately a factor of two if 5 satellites are used. On the other hand, more satellites do not result in a large reduction of the systematic error. The systematic error is somewhat smaller for the CarbonSat constellation configuration achieving global coverage everyday. Finally, we recommend the CarbonSat constellation configuration that achieves daily global coverage.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...