ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-16
    Description: A new code to simulate lava flow spread, MrLavaLoba, is presented. In the code, erupted lava is itemized in parcels having an elliptical shape and prescribed volume. New parcels bud from existing ones according to a probabilistic law influenced by the local steepest slope direction and by tunable input settings. MrLavaLoba must be accounted among the probabilistic codes for the simulation of lava flows, because it is not intended to mimic the actual process of flowing or to provide directly the progression with time of the flow field, but rather to guess the most probable inundated area and final thickness of the lava deposit. The code's flexibility allows it to produce variable lava flow spread and emplacement according to different dynamics (e.g. pahoehoe or channelized-‘a‘ā). For a given scenario, it is shown that model outputs converge, in probabilistic terms, towards a single solution. The code is applied to real cases in Hawaii and Mt. Etna, and the obtained maps are shown.
    Description: Published
    Description: 323-334
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-30
    Description: Magma permeability is the most important factor controlling the transition between effusive and explosive styles during magma ascent at active volcanoes. When magma permeability is low, gas bubbles in the melt expand as the pressure decreases; above a critical gas volume fraction threshold, magma fragments, generating an explosive eruption. On the contrary, if magma is sufficiently permeable, gas ascends through the conduit towards the surface faster than the magma ascent speed, producing decoupling of gas and magma and reducing the maximum vesicularity. This decoupled flow inhibits fragmentation and leads to either an effusive eruption or quiescent degassing. Accurate modelling of permeability behaviour is therefore fundamental when simulating magma ascent processes. In this work, we compare different permeability models for low viscosity magmas using a 1D steady-state model. We use, as a test case, the 2007 effusive eruption at Stromboli volcano, Italy. We compare the numerical solutions computed using the linear Darcy's law with those obtained using the non-linear Forchheimer relation. Our numerical results show that, using Darcy's law and appropriate permeability models, it is possible to obtain an effusive eruption in agreement with observations. However, we found that, in the shallow conduit, the limit of applicability of Darcy's law (that is the modified Reynolds number Rem 〈 10) is exceeded due to high gas flow rates. Furthermore, we show that using Forchheimer's law and some parametric expressions for viscous and inertial permeabilities, results can be compatible with an effusive eruption, once appropriate values are chosen. However, one of the parameters required to obtain an effusive eruption, the friction coefficient between gas and melt, is several orders of magnitude lower than that determined from measurements of solid erupted samples. This result requires further experimental verification. We propose that our novel permeability modelling regime is suitable for basaltic volcanism. We highlight that permeabilities derived from studying solid samples are not representative of the actual permeability of a molten magma, at least in the case of low viscosity basaltic magmas. These findings have fundamental implications for the quantification of permeability, modelling of volcanic processes and volcanic eruption dynamics, and the forecasting of volcanic eruptions.
    Description: Published
    Description: 279-290
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-19
    Description: Syneruptive gas flux time series can, in principle, be retrieved from satellite maps of SO2 collected during and immediately after volcanic eruptions, and used to gain insights into the volcanic processes which drive the volcanic activity. Determination of the age and height of volcanic plumes are key prerequisites for such calculations. However, these parameters are challenging to constrain using satellite-based techniques. Here, we use imagery from OMI and GOME-2 satellite sensors and a novel numerical procedure based on back-trajectory analysis to calculate plume height as a function of position at the satellite measurement time together with plume injection height and time at a volcanic vent location. We applied this new procedure to three Etna eruptions (12 August 2011, 18 March 2012 and 12 April 2013) and compared our results with independent satellite and ground-based estimations. We also compare our injection height time-series with measurements of volcanic tremor, which reflects the eruption intensity, showing a good match between these two datasets. Our results are a milestone in progressing towards reliable determination of gas flux data from satellite-derived SO2 maps during volcanic eruptions, which would be of great value for operational management of explosive eruptions.
    Description: 1) European Research Council under the European Union's Seventh Framework Programme (FP/2.007-2013)/ERC Grant Agreement no. 279802, project 283 CO2Volc. 2) MEDiterranean SUpersite Volcanoes 280 (MED-SUV) WP 3.3.3
    Description: Published
    Description: 79-91
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Volcanic SO2 ; Trajectory modelling ; Remote sensing ; Volcanic tremor ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-17
    Description: In this study, we combine reconstructions of volcanological data sets and inputs from a structured expert judgment to produce a first long-term probability map for vent opening location for the next Plinian or sub-Plinian eruption of Somma-Vesuvio. In the past, the volcano has exhibited significant spatial variability in vent location; this can exert a significant control on where hazards materialize (particularly of pyroclastic density currents). The new vent opening probability mapping has been performed through (i) development of spatial probability density maps with Gaussian kernel functions for different data sets and (ii) weighted linear combination of these spatial density maps. The epistemic uncertainties affecting these data sets were quantified explicitly with expert judgments and implemented following a doubly stochastic approach. Various elicitation pooling metrics and subgroupings of experts and target questions were tested to evaluate the robustness of outcomes. Our findings indicate that (a) Somma-Vesuvio vent opening probabilities are distributed inside the whole caldera, with a peak corresponding to the area of the present crater, but with more than 50% probability that the next vent could open elsewhere within the caldera; (b) there is a mean probability of about 30% that the next vent will open west of the present edifice; (c) there is a mean probability of about 9.5% that the next medium-large eruption will enlarge the present Somma-Vesuvio caldera, and (d) there is a nonnegligible probability (mean value of 6–10%) that the next Plinian or sub-Plinian eruption will have its initial vent opening outside the present Somma-Vesuvio caldera.
    Description: Published
    Description: 4357 – 4376
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-12
    Description: The entry of groundwater into volcanic conduits has been proposed as a major modifying agent of eruptive dynamics, influencing magma fragmentation and pyroclast dispersion. Although several external water sources and interaction mechanisms have been proposed, the nature and effects of magma-water interaction are still largely unclear, as well as its controlling factors. A common postulate for phreatomagmatic activity to occur is that pressure in a conduit crosscutting a subsurface aquifer should drop below the aquifer pressure, which depends on the properties of the aquifer and the ascending magma. In agreement with most phreatomagmatic eruptions, we show that the injection of large mass fractions of groundwater during silicic explosive eruptions (e.g., 〉5 wt%) is only physically feasible for low-eruption-rate events; while high-intensity eruptions with evidence of magma-water interaction are probably related to other interaction mechanisms (e.g., the involvement of surface water or the destabilization of aquifer-hosting rocks during collapse phases). Because conditions for access of groundwater to the conduit are preferably reached above the fragmentation level, magma-water interaction seems not to induce dramatic changes to the features of a primary ‘dry’ vesiculation, as commonly claimed. Hence, the low vesicularity indexes often attributed to phreatomagmatic eruptions are difficult to explain by the quenching effect of groundwater on not-fully developed vesicularity. Instead, these indexes may be related to the low eruption rates needed for effective magma-water interaction, generally characterized by significant lateral gradients of vesicularity in narrow conduits.
    Description: Published
    Description: 867-870
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: magma-water ; Magma Ascent ; phreatomagmatic eruptions ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-30
    Description: Volcanic activity exhibits a wide range of eruption styles, from relatively slow effusive eruptions that produce lava flows and lava domes, to explosive eruptions that can inject large volumes of fragmented magma and volcanic gases high into the atmosphere. Although controls on eruption style and scale are not fully understood, previous research suggests that the dynamics of magma ascent in the shallow subsurface (〈 10 km depth) may in part control the transition from effusive to explosive eruption and variations in eruption style and scale. Here we investigate the initial stages of explosive eruptions using a 1D transient model for magma ascent through a conduit based on the theory of the thermodynamically compatible systems. The model is novel in that it implements finite rates of volatile exsolution and velocity and pressure relaxation between the phases. We validate the model against a simple two-phase Riemann problem, the Air-Water Shock Tube problem, which contains strong shock and rarefaction waves. We then use the model to explore the role of the aforementioned finite rates in controlling eruption style and duration, within the context of two types of eruptions at the Soufrière Hills Volcano, Montserrat: Vulcanian and sub-Plinian eruptions. Exsolution, pressure, and velocity relaxation rates all appear to exert important controls on eruption duration. More significantly, however, a single finite exsolution rate characteristic of the Soufrière Hills magma composition is able to produce both end-member eruption durations observed in nature. The duration therefore appears to be largely controlled by the timescales available for exsolution, which depend on dynamic processes such as ascent rate and fragmentation wave speed.
    Description: Published
    Description: 110-139
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Magma ascent ; Conduit dynamics ; Soufrière Hills Volcano ; Finite-rate exsolution ; Pressure relaxation ; Velocity relaxation ; 04.08. Volcanology ; Numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-03-05
    Description: During the emplacement of the 2014-2015 lava flow in Holuhraun (Iceland) a new code for the simulation of lava flows (MrLavaLoba) was developed and tested. MrLavaLoba is a probabilistic code which derives the area likely to be inundated and the thickness of the final lava deposit. The flow field in Holuhraun progressed through a fairly flat floodplain, and the initial limited availability of topographic data was challenging, forcing us to develop specific modeling strategies. The development of the code, as well as simulation tests, continued after the end of the eruption, and latest results largely benefitted from the availability of improved topographic data. MrLavaLoba simulations of the Holuhraun scenario are compared with detailed observational analyses derived from the literature. The obtained results highlight that small-scale morphological features in the preemplacement topography can strongly influence the propagation of the flow. The distribution of the volume settling throughout the extension of the flow field turned out to be very important, and strongly affects the fit between the simulated and the real extent of the flow field. The performed analysis suggests that an improvement in the code should allow adaptable calibration during the course of the eruption in order to mimic different emplacement styles in different phases.
    Description: Published
    Description: VO228
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: lava flow ; Holuhraun ; 04.08. Volcanology ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-05-27
    Description: Extrusion rates during lava dome-building eruptions are variable and eruption sequences at these volcanoes generally have multiple phases. Merapi Volcano, Java, Indonesia, exemplifies this common style of activity. Merapi is one of Indonesia's most active volcanoes and during the 20th and early 21st centuries effusive activity has been characterized by long periods of very slow (〈0.1 m3 s−1) extrusion rate interrupted every few years by short episodes of elevated extrusion rates (1–4 m3 s−1) lasting weeks to months. One such event occurred in May–July 2006, and previous research has identified multiple phases with different extrusion rates and styles of activity. Using input values established in the literature, we apply a 1D, isothermal, steady-state numerical model of magma ascent in a volcanic conduit to explain the variations and gain insight into corresponding conduit processes. The peak phase of the 2006 eruption occurred in the two weeks following the May 27 Mw 6.4 earthquake 50 km to the south. Previous work has suggested that the peak extrusion rates observed in early June were triggered by the earthquake through either dynamic stress-induced overpressure or the addition of CO2 due to decarbonation and gas escape from new fractures in the bedrock. We use the numerical model to test the feasibility of these proposed hypotheses and show that, in order to explain the observed change in extrusion rate, an increase of approximately 5–7 MPa in magma storage zone overpressure is required. We also find that the addition of ∼1000 ppm CO2 to some portion of the magma in the storage zone following the earthquake reduces water solubility such that gas exsolution is sufficient to generate the required overpressure. Thus, the proposed mechanism of CO2 addition is a viable explanation for the peak phase of the Merapi 2006 eruption. A time-series of extrusion rate shows a sudden increase three days following the earthquake. We explain this three-day delay by the combined time required for the effects of the earthquake and corresponding CO2 increase to develop in the magma storage system (1–2 days), and the time we calculate for the affected magma to ascend from storage zone to surface (40 h). The increased extrusion rate was sustained for 2–7 days before dissipating and returning to pre-earthquake levels. During this phase, we estimate that 3.5 million m3 DRE of magma was erupted along with 11 ktons of CO2. The final phase of the 2006 eruption was characterized by highly variable extrusion rates. We demonstrate that those changes were likely controlled by failure of the edifice that had been confining the dome to Merapi's crater and subsequent large dome collapses. The corresponding reductions in confining pressure caused increased extrusion rates that rapidly rebuilt the dome and led to further collapses, a feedback cycle that prolonged the eruption. In a more general sense, this study demonstrates that both internal changes, such as magma volatile content and overpressure, and external forces, such as edifice collapse and regional earthquakes, can affect variations in eruption intensity. Further, we also demonstrate how these external forces can initiate internal changes and how these parameters may interact with one another in a feedback scenario.
    Description: Published
    Description: 377-387
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-02-15
    Description: Nucleation and growth of crystals, and the resulting crystal size distribution, play a fundamental role in controlling the physical properties of magmas and consequently the dynamics of the eruptions. In the past decades, laboratory experiments demonstrated that size and shape of crystals strongly control the physical properties of magma and lava. Additionally, natural and experimental samples are usually characterized in terms of their crystal size distribution to link it with physical processes that are not directly observable, such as cooling or decompression mechanisms. In this paper, we present CrystalMoM, a new predictive model, based on the quadrature-based method of moments, developed for studying the kinetic of crystallization in volcanic systems. The quadrature-based method of moments, well established in the field of chemical engineering, represents a mesoscale modelling approach that rigorously simulates the space–time evolution of a distribution of particles, by considering its moments. The method is applied here, for the first time, for studying the equilibrium/disequilibrium crystallization in magma, modelling the temporal evolution of the moments of a crystal size distribution. The model, verified against numerical and experimental data, represents a valuable tool to infer the cooling and decompression rates from the crystal size distribution observed in natural samples.
    Description: Published
    Description: 100
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Crystallization ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-22
    Description: Explosive volcanic eruptions comprise a complex series of processes involving withdrawal from the magma chamber, magma ascent along the conduit and eruption column dynamics. Numerous studies have modeled the different sub-domains of a volcanic system, but their interplay has seldom been analyzed. To this end, we developed C 3 (C-cubed, that stands for Chamber, Conduit and Column), a new integrated model that describes the dynamics of an explosive eruption as a series of steady state regimes and as a function of geometry and initial conditions of the magma reservoir. We used Global Sensitivity Analysis to quantify the role of the relevant model parameters and describe the interplay between the different volcanic sub-domains. In particular, we analyzed the evolution of a sustained explosive eruption in order to identify the conditions for buoyant, super-buoyant and collapsing columns. Input data were based on field reconstructions of Quaternary explosive eruptions in the Vulsini Volcanic District (Roman Province, central Italy). Model results show that: 1) the column regime, although affected by complex interactions among several factors, mostly depends on the conduit radius, the volatile content (i.e. supersaturation concentration at the top of the chamber) and length of the conduit, in decreasing level of importance; 2) the amount of mass erupted is independent of the conduit radius and depends mostly on volatile supersaturation, the radius of the magma chamber, the length of the conduit and the overpressure at the conduit inlet; 3) the mass flow-rate, column height and duration of the eruption are largely controlled by the conduit radius; 4) the flow pressure and density at the conduit exit are mostly controlled by the conduit inlet overpressure at the onset of the eruption, and by the length of the conduit at the end of the eruption; 5) the exit velocity from the conduit is mostly controlled by the volatile content, the length of the conduit and the inlet overpressure. In this model framework, and with specific reference to selected Plinian events of the Vulsini Volcanic District, simulation results show that column collapse is not achieved for reasonable eruption durations (order of hours) and conduit widths (tens of meters). This is consistent with field reconstructions suggesting that column collapse did not likely occur and that pyroclastic flows were therefore generated by independent mechanisms from ring fissures and/or multiple vents concomitant to caldera collapse.
    Description: Published
    Description: 98-110
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...