ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-22
    Print ISSN: 0957-4484
    Electronic ISSN: 1361-6528
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.
    Keywords: Astrodynamics
    Type: NF1676L-21940 , 2016 IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Transportation and Safety
    Type: NF1676L-22257 , AAS/AIAA Astrodynamics Specialist Conference; Aug 09, 2015 - Aug 13, 2015; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A multifunctional hot structure heatshield concept is being developed to provide technology enhancements with significant benefits compared to the current state-of-the-art heatshield technology. These benefits can potentially enable future planetary missions. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heatshield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation is sized for use underneath the hot structure to maintain required operational internal temperatures. The approach followed includes developing preliminary designs to demonstrate feasibility of the concept and benefits over a traditional, baseline design. Where prior work focused on a concept for an Earth entry vehicle, the current efforts presented here are focused on developing a generic heatshield model and performing a trade study for a Mars entry application. This trade study includes both structural and thermal evaluation. The results indicate that a hot structure concept is a feasible alternative to traditional heatshields and may offer advantages that can enable future entry missions.
    Keywords: Structural Mechanics; Spacecraft Design, Testing and Performance
    Type: NF1676L-21700 , AIAA International Space Planes and Hypersonic Systems and Technologies Conference (Hypersonics 2015); Jul 06, 2015 - Jul 09, 2015; Glasgow, Scotland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance; Lunar and Planetary Science and Exploration
    Type: M16-5153 , IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Mass estimating relationships (MERs) are developed to predict the amount of thermal protection system (TPS) necessary for safe Earth entry for blunt-body spacecraft using simple correlations that are non-ITAR and closely match estimates from NASA's highfidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT). These MERs provide a first order estimate for rapid feasibility studies. There are 840 different trajectories considered in this study, and each TPS MER has a peak heating limit. MERs for the vehicle forebody include the ablators Phenolic Impregnated Carbon Ablator (PICA) and Carbon Phenolic atop Advanced Carbon-Carbon. For the aftbody, the materials are Silicone Impregnated Reusable Ceramic Ablator (SIRCA), Acusil II, SLA- 561V, and LI-900. The MERs are accurate to within 14% (at one standard deviation) of FIAT prediction, and the most any MER can under predict FIAT TPS thickness is 18.7%. This work focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN18770 , AIAA Thermophysics Conference; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Expensive simulators prevent any kind of meaningful analysis to be performed on the phenomena they model. To get around this problem the concept of using a statistical emulator as a surrogate representation of the simulator was introduced in the 1980's. Presently, simulators have become more and more complex and as a result running a single example on these simulators is very expensive and can take days to weeks or even months. Many new techniques have been introduced, termed criteria, which sequentially select the next best (most informative to the emulator) point that should be run on the simulator. These criteria methods allow for the creation of an emulator with only a small number of simulator runs. We follow and extend this framework to expensive classification simulators.
    Keywords: Computer Programming and Software
    Type: NASA/TM-2016-219174 , L-20675 , NF1676L-23725
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Develop two evolutionary rigid vehicle concepts to deliver human-scale payloads (20 metric tons) to the surface of Mars: Capsule; Lifting body, mid-range lift-to-drag ratio (Mid L/D). Determine vehicle configurations for various mission flight phases. Determine vehicle performance: Integrated system mass; Ability to meet landing constraints; Payload packaging and surface access. Provide technology investment recommendations to NASAs Space Technology Mission Directorate.
    Keywords: Lunar and Planetary Science and Exploration; Spacecraft Design, Testing and Performance
    Type: MSFC-E-DAA-TN61432 , Space and Astronautics Forum (AIAA SPACE Forum 2018); Sep 17, 2018 - Sep 19, 2018; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Several technology investments are required to develop Mars human scale Entry, Descent, and Landing (EDL) systems. Studies play the critical role of identifying the most feasible technical paths and high payoff investments. The goal of NASA's Entry, Descent and Landing Architecture Study is to inform those technology investments. In Phase 1 of the study, a point design for one lifting-body-like rigid decelerator vehicle, was developed. In Phase 2, a capsule concept was also considered to determine how it accommodated the human mission requirements. This paper summarizes the concept of operations for both rigid vehicles to deliver a 20-metric ton (t) payload to the surface of Mars. Details of the vehicle designs and flight performance are presented along with a packaging, mass sizing, and a launch vehicle fairing assessment. Finally, recommended technology investments based on the analysis of the rigid vehicles are provided.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN60268 , AIAA SPACE Forum; Sep 17, 2018 - Sep 19, 2018; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration is planning to send humans to Mars. As part of the Evolvable Mars Campaign, different en- try vehicle configurations are being designed and considered for delivering larger payloads than have been previously sent to the surface of Mars. Mass and packing volume are driving factors in the vehicle design, and the thermal protection for planetary entry is an area in which advances in technology can offer potential mass and volume savings. The feasibility and potential benefits of a carbon-carbon hot structure concept for a Mars entry vehicle is explored in this paper. The windward heat shield of a capsule design is assessed for the hot structure concept as well as an ablative thermal protection system (TPS) attached to a honeycomb sandwich structure. Independent thermal and structural analyses are performed to determine the minimum mass design. The analyses are repeated for a range of design parameters, which include the trajectory, vehicle size, and payload. Polynomial response functions are created from the analysis results to study the capsule mass with respect to the design parameters. Results from the polynomial response functions created from the thermal and structural analyses indicate that the mass of the capsule was higher for the hot structure concept as compared to the ablative TPS for the parameter space considered in this study.
    Keywords: Space Transportation and Safety; Spacecraft Design, Testing and Performance
    Type: NF1676L-26554 , AIAA SPACE 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...