ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (25)
  • 2010-2014  (19)
  • 1
    Publication Date: 2017-08-22
    Print ISSN: 0957-4484
    Electronic ISSN: 1361-6528
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Development of a Multifunctional Hot Structure Heat Shield concept has initiated with the goal to provide advanced technology with significant benefits compared to the current state of the art heat shield technology. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heat shield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation has been sized for use underneath the hot structure to maintain desired internal temperatures. The approach was to develop a preliminary design to demonstrate feasibility of the concept. The preliminary results indicate that the concept has the potential to save both mass and volume with significantly less recession compared to traditional heat shield designs, and thus provide potential to enable new planetary missions.
    Keywords: Structural Mechanics; Spacecraft Design, Testing and Performance
    Type: AIAA Paper 2014-0350 , NF1676L-16692 , AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.
    Keywords: Astrodynamics
    Type: NF1676L-21940 , 2016 IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Space Transportation and Safety
    Type: NF1676L-22257 , AAS/AIAA Astrodynamics Specialist Conference; Aug 09, 2015 - Aug 13, 2015; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A multifunctional hot structure heatshield concept is being developed to provide technology enhancements with significant benefits compared to the current state-of-the-art heatshield technology. These benefits can potentially enable future planetary missions. The concept is unique in integrating the function of the thermal protection system with the primary load carrying structural component. An advanced carbon-carbon material system has been evaluated for the load carrying structure, which will be utilized on the outer surface of the heatshield, and thus will operate as a hot structure exposed to the severe aerodynamic heating associated with planetary entry. Flexible, highly efficient blanket insulation is sized for use underneath the hot structure to maintain required operational internal temperatures. The approach followed includes developing preliminary designs to demonstrate feasibility of the concept and benefits over a traditional, baseline design. Where prior work focused on a concept for an Earth entry vehicle, the current efforts presented here are focused on developing a generic heatshield model and performing a trade study for a Mars entry application. This trade study includes both structural and thermal evaluation. The results indicate that a hot structure concept is a feasible alternative to traditional heatshields and may offer advantages that can enable future entry missions.
    Keywords: Structural Mechanics; Spacecraft Design, Testing and Performance
    Type: NF1676L-21700 , AIAA International Space Planes and Hypersonic Systems and Technologies Conference (Hypersonics 2015); Jul 06, 2015 - Jul 09, 2015; Glasgow, Scotland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance; Lunar and Planetary Science and Exploration
    Type: M16-5153 , IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Mass estimating relationships (MERs) are developed to predict the amount of thermal protection system (TPS) necessary for safe Earth entry for blunt-body spacecraft using simple correlations that are non-ITAR and closely match estimates from NASA's highfidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT). These MERs provide a first order estimate for rapid feasibility studies. There are 840 different trajectories considered in this study, and each TPS MER has a peak heating limit. MERs for the vehicle forebody include the ablators Phenolic Impregnated Carbon Ablator (PICA) and Carbon Phenolic atop Advanced Carbon-Carbon. For the aftbody, the materials are Silicone Impregnated Reusable Ceramic Ablator (SIRCA), Acusil II, SLA- 561V, and LI-900. The MERs are accurate to within 14% (at one standard deviation) of FIAT prediction, and the most any MER can under predict FIAT TPS thickness is 18.7%. This work focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN18770 , AIAA Thermophysics Conference; Jun 22, 2015 - Jun 26, 2015; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN9770 , 10th International Planetary Probe Workshop; Jun 17, 2013 - Jun 21, 2013; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.
    Keywords: Systems Analysis and Operations Research
    Type: NF1676L-13984 , 2012 IEEE Aerospace Conference; Mar 03, 2012 - Mar 10, 2012; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Mass Estimating Relationships (MERs) have been developed for use in the Program to Optimize Simulated Trajectories II (POST2) as part of NASA's multi-mission Earth Entry Vehicle (MMEEV) concept. MERs have been developed for the thermal protection systems of PICA and of Carbon Phenolic atop Advanced Carbon-Carbon on the forebody and for SIRCA and Acusil II on the backshell. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed herein.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: TSM-4373 , ARC-E-DAA-TN4373 , 43rd AIAA Thermophysics Conference; Jun 25, 2012 - Jun 28, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...