ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (5)
Collection
Years
Year
  • 1
    Publication Date: 2017-06-01
    Description: This study highlights infrared sensor technology incorporated into the global positioning system (GPS) dropsonde platforms to obtain sea surface temperature (SST) measurements. This modified sonde (IRsonde) is used to improve understanding of air–sea interaction in tropical cyclones (TCs). As part of the Sandy Supplemental Program, IRsondes were constructed and then deployed during the 2014 hurricane season. Comparisons between SSTs measured by collocated IRsondes and ocean expendables show good agreement, especially in regions with no rain contamination. Surface fluxes were estimated using measurements from the IRsondes and AXBTs via a bulk method that requires measurements of SST and near-surface (10 m) wind speed, temperature, and humidity. The evolution of surface fluxes and their role in the intensification and weakening of Hurricane Edouard (2014) are discussed in the context of boundary layer recovery. The study’s result emphasizes the important role of surface flux–induced boundary layer recovery in regulating the low-level thermodynamic structure that is tied to the asymmetry of convection and TC intensity change.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-01
    Description: The Mesoscale Predictability Experiment (MPEX) was conducted from 15 May to 15 June 2013 in the central United States. MPEX was motivated by the basic question of whether experimental, subsynoptic observations can extend convective-scale predictability and otherwise enhance skill in short-term regional numerical weather prediction. Observational tools for MPEX included the National Science Foundation (NSF)–National Center for Atmospheric Research (NCAR) Gulfstream V aircraft (GV), which featured the Airborne Vertical Atmospheric Profiling System mini-dropsonde system and a microwave temperature-profiling (MTP) system as well as several ground-based mobile upsonde systems. Basic operations involved two missions per day: an early morning mission with the GV, well upstream of anticipated convective storms, and an afternoon and early evening mission with the mobile sounding units to sample the initiation and upscale feedbacks of the convection. A total of 18 intensive observing periods (IOPs) were completed during the field phase, representing a wide spectrum of synoptic regimes and convective events, including several major severe weather and/or tornado outbreak days. The novel observational strategy employed during MPEX is documented herein, as is the unique role of the ensemble modeling efforts—which included an ensemble sensitivity analysis—to both guide the observational strategies and help address the potential impacts of such enhanced observations on short-term convective forecasting. Preliminary results of retrospective data assimilation experiments are discussed, as are data analyses showing upscale convective feedbacks.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-01
    Description: A GPS dropsonde is a scientific instrument deployed from research and operational aircraft that descends through the atmosphere by a parachute. The dropsonde provides high-quality, high-vertical-resolution profiles of atmospheric pressure, temperature, relative humidity, wind speed, and direction from the aircraft flight level to the surface over oceans and remote areas. Since 1996, GPS dropsondes have been routinely dropped during hurricane reconnaissance and surveillance flights to help predict hurricane track and intensity. From 1996 to 2012, NOAA has dropped 13,681 dropsondes inside hurricane eye walls or in the surrounding environment for 120 tropical cyclones (TCs). All NOAA dropsonde data have been collected, reformatted to one format, and consistently and carefully quality controlled using state-of-the-art quality-control (QC) tools. Three value-added products, the vertical air velocity and the radius and azimuth angle of each dropsonde location, are generated and added to the dataset. As a result, a long-term (1996–2012), high-quality, high-vertical-resolution (∼5–15 m) GPS dropsonde dataset is created and made readily available for public access. The dropsonde data collected during hurricane reconnaissance and surveillance flights have improved TC-track and TC-intensity forecasts significantly. The impact of dropsonde data on hurricane studies is summarized. The scientific applications of this long-term dropsonde dataset are highlighted, including characterizing TC structures, studying TC environmental interactions, identifying surface-based ducts in the hurricane environment that affect electromagnetic wave propagation, and validating satellite temperature and humidity profiling products.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-28
    Description: This paper presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN40405 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 9; 4; 1845-1857
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...