ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-01
    Description: A GPS dropsonde is a scientific instrument deployed from research and operational aircraft that descends through the atmosphere by a parachute. The dropsonde provides high-quality, high-vertical-resolution profiles of atmospheric pressure, temperature, relative humidity, wind speed, and direction from the aircraft flight level to the surface over oceans and remote areas. Since 1996, GPS dropsondes have been routinely dropped during hurricane reconnaissance and surveillance flights to help predict hurricane track and intensity. From 1996 to 2012, NOAA has dropped 13,681 dropsondes inside hurricane eye walls or in the surrounding environment for 120 tropical cyclones (TCs). All NOAA dropsonde data have been collected, reformatted to one format, and consistently and carefully quality controlled using state-of-the-art quality-control (QC) tools. Three value-added products, the vertical air velocity and the radius and azimuth angle of each dropsonde location, are generated and added to the dataset. As a result, a long-term (1996–2012), high-quality, high-vertical-resolution (∼5–15 m) GPS dropsonde dataset is created and made readily available for public access. The dropsonde data collected during hurricane reconnaissance and surveillance flights have improved TC-track and TC-intensity forecasts significantly. The impact of dropsonde data on hurricane studies is summarized. The scientific applications of this long-term dropsonde dataset are highlighted, including characterizing TC structures, studying TC environmental interactions, identifying surface-based ducts in the hurricane environment that affect electromagnetic wave propagation, and validating satellite temperature and humidity profiling products.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-03
    Description: This study investigated precipitation distribution patterns in association with atmospheric rivers (ARs). The Weather Research and Forecasting (WRF) model was employed to simulate two strong atmospheric river events. The precipitation forecasts were highly sensitive to cloud microphysics parameterization schemes. Thus, radar observed and simulated Z H and Z D R were evaluated to provide information about the drop-size distribution (DSD). Four microphysics schemes (WSM-5, WSM-6, Thompson, and WDM-6) with nested simulations (3 km, 1 km, and 1/3 km) were conducted. One of the events mostly contained bright-band (BB) rainfall and lasted less than 24 h, while the other contained both BB and non-bright-band (NBB) rainfall, and lasted about 27 h. For each event, there was no clear improvement in the 1/3 km model, over the 1 km model. Overall, the WDM-6 microphysics scheme best represented the rainfall and the DSD. It appears that this scheme performed well, due to its relative simplicity in ice and mixed-phase microphysics, while providing double-moment predictions of warm rain microphysics (i.e., cloud and rain mixing ratio and number concentration). The other schemes tested either provided single-moment predictions of all classes or double-moment predictions of ice and rain (Thompson). Considering the shallow nature of precipitation in atmospheric rivers and the high-frequency of the orographic effect enhancing the warm rain process, these assumptions appear to be applicable over the southern San Francisco Bay Area.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...