ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (2)
  • 2015-2019  (2)
Sammlung
Datenquelle
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2019-07-13
    Beschreibung: The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.
    Schlagwort(e): Meteorology and Climatology; Computer Programming and Software
    Materialart: GSFC-E-DAA-TN27516 , Bulletin of the American Meteorological Society (ISSN 0003-0007) (e-ISSN 1520-0477); 97; 7; 1229-1247
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: This study evaluates a direct remote sensing approach from space for the determination of ecosystem photosynthetic light use efficiency (LUE), through measurement of vegetation reflectance changes expressed with the Photochemical Reflectance Index (PRI). The PRI is a normalized difference index based on spectral changes at a physiologically active wavelength (approximately 531 nanometers) as compared to a reference waveband, and is only available from a very few satellites. These include the two Moderate-Resolution Imaging Spectroradiometers (MODIS) on the Aqua and Terra satellites each of which have a narrow (10-nanometer) ocean band centered at 531 nanometers. We examined several PRI variations computed with candidate reference bands, since MODIS lacks the traditional 570-nanometer reference band. The PRI computed using MODIS land band 1 (620-670 nanometers) gave the best performance for daily LUE estimation. Through rigorous statistical analyses over a large image collection (n equals 420), the success of relating in situ daily tower-derived LUE to MODIS observations for northern forests was strongly influenced by satellite viewing geometry. LUE was calculated from CO2 fluxes (moles per moles of carbon absorbed quanta) measured at instrumented Canadian Carbon Program flux towers in four Canadian forests: a mature fir site in British Columbia, mature aspen and black spruce sites in Saskatchewan, and a mixed deciduous/coniferous forest site in Ontario. All aspects of the viewing geometry had significant effects on the MODIS-PRI, including the view zenith angle (VZA), the view azimuth angle, and the displacement of the view azimuth relative to the solar principal plane, in addition to illumination related variables.Nevertheless, we show that forward scatter sector views (VZA, 16 degrees-45 degrees) provided the strongest relationships to daily LUE, especially those collected in the early afternoon by Aqua (r squared = 0.83, RMSE (root mean square error) equals 0.003 moles per moles of carbon absorbed quanta). Nadir (VZA, 0 degrees plus or minus 15 degrees) and backscatter views (VZA, 16 degrees to 45 degrees) had lower performance in estimating LUE (nadir: r squared approximately equal to 0.62-0.67; backscatter: r squared approximately equal to 0.54-0.59) and similar estimation error (RMSE equals 0.004-0.005).When directional effects were not considered, only a moderately successful MODIS-PRI vs. LUE relationship (r squared equals 0.34, RMSE equals 0.007) was obtained in the full dataset (all views & sites, both satellites), but site-specific relationships were able to discriminate between coniferous and deciduous forests. Overall, MODIS-PRI values from Terra (late morning) were higher than those from Aqua (early afternoon), before/after the onset of diurnal stress responses expressed spectrally. Therefore, we identified ninety-two Terra-Aqua "same day" pairs, for which the sum of Terra morning and Aqua afternoon MODIS-PRI values (PRI (sub sum) using all available directional observations was linearly correlated with daily tower LUE (r squared equals 0.622, RMSE equals 0.013) and independent of site differences or meteorological information. Our study highlights the value of off-nadir directional reflectance observations, and the value of pairing morning and afternoon satellite observations to monitor stress responses that inhibit carbon uptake in Canadian forest ecosystems. In addition, we show that MODIS-PRI values, when derived from either: (i) forward views only, or (ii) Terra/Aqua same day (any view) combined observations, provided more accurate estimates of tower-measured daily LUE than those derived from either nadir or backscatter views or those calculated by the widely used semi-operational MODIS GPP model (MOD17) which is based on a theoretical maximum LUE and environmental data. Consequently, we demonstrate the importance of diurnal as well as off-nadir satellite observations for detecting vegetation physiological processes.
    Schlagwort(e): Earth Resources and Remote Sensing
    Materialart: GSFC-E-DAA-TN41404 , Remote Sensing of Environment (ISSN 0034-4257); 187; 345-366
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...