ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3deg field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN38116 , The Astrophysical Journal Supplement Series; 227; 2; 21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Satellite observations sustained since 1979 have been the primary source of information to reveal Arctic Ocean sea ice extent is diminishing rapidly. Sea ice is also thinning based on historical surface and near-surface records and more recent satellite retrievals. There is a new normal environment in the Arctic environment with substantial socio-economic impacts. A key question is: What are the spatial and temporal characteristics of the sea ice thickness distribution throughout the annual cycle, and what is the evolving inter-annual trend? Arctic Ocean sea ice conditions have been determined with passive microwave radiometer, active scatterometer and other satellite instrument measurements recorded by a continuing series of satellites. An important feature of the continuous time series measurements has been the overlap of each new satellite dataset with ongoing measurements so as to provide adequate time intervals for calibration and validation. Satellite instrument diversity has provided both coarse spatial resolution measurements over the entire Arctic Ocean for long-period time series and limited-duration fine spatial resolution data over selected regions for navigation and other applications. Satellite observations of Arctic Ocean sea ice will continue to increase in importance because predictability of sea ice is poor and societal interest is great. Unfortunately, however the sustainability of some critical elements of the current Arctic Ocean satellite measurement suite beyond 2020 remains uncertain, e.g., after the CryoSat-2 and ICESat-2 missions have concluded.
    Keywords: Earth Resources and Remote Sensing
    Type: JPL-CL-16-2189 , 8th Asia/Oceania Meteorological Satellite Users'' Conference; Jun 08, 2016 - Jun 09, 2016; Biot; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-26
    Description: No abstract available
    Keywords: Meteorology and Climatology; Oceanography
    Type: AGU 2015 Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-07
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: JPL-CL-16-0956 , International Ocean Vector Wind Science Team Meeting; May 17, 2016 - May 19, 2016; Sapporo; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-24
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: JPL-CL-16-2339 , Asia/Oceania Meteorological Satellite Users' Conference; Jun 08, 2016 - Jun 09, 2016; Biot; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-23
    Description: The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that promises to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Supported by the Simons Foundation, the Heising-Simons Foundation, and with contributions from collaborating institutions, SO will see first light in 2021 and start a five year survey in 2022. SO has 287 collaborators from 12 countries and 53 institutions, including 85 students and 90 postdocs. The SO experiment in its currently funded form (SO-Nominal) consists of three 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT). Optimized for minimizing systematic errors in polarization measurements at large angular scales, the SATs will perform a deep, degree-scale survey of 10% of the sky to search for the signature of primordial gravitational waves. The LAT will survey 40% of the sky with arc-minute resolution. These observations will measure (or limit) the sum of neutrino masses, search for light relics, measure the early behavior of Dark Energy, and refine our understanding of the intergalactic medium, clusters and the role of feedback in galaxy formation. With up to ten times the sensitivity and five times the angular resolution of the Planck satellite, and roughly an order of magnitude increase in mapping speed over currently operating (Stage 3) experiments, SO will measure the CMB temperature and polarization fluctuations to exquisite precision in six frequency bands from 27 to 280 GHz. SO will rapidly advance CMB science while informing the design of future observatories such as CMB-S4. Construction of SO-Nominal is fully funded, and operations and data analysis are funded for part of the planned five-year observations. We will seek federal funding to complete the observations and analysis of SO-Nominal, at the $25M level. The SO has a low risk and cost efficient upgrade path the 6 m LAT can accommodate almost twice the baseline number of detectors and the SATs can be duplicated at low cost. We will seek funding at the $75M level for an expansion of the SO (SO-Enhanced) that fills the remaining focal plane in the LAT, adds three SATs, and extends operations by five years, substantially improving our science return. By this time SO may be operating as part of the larger CMB-S4 project. This white paper summarizes and extends material presented in, which describes the science goals of SO-Nominal, and which describe the instrument design.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74208
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-10-23
    Description: CMB-S4 is envisioned to be the ultimate ground-based cosmic microwave background experiment, crossing critical thresholds in our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. The CMB-S4 science case is spectacular: the search for primordial gravitational waves as predicted from inflation and the imprint of relic particles including neutrinos, unique insights into dark energy and tests of gravity on large scales, elucidating the role of baryonic feedback on galaxy formation and evolution, opening up a window on the transient Universe at millimeter wavelengths, and even the exploration of the outer Solar System. The CMB-S4 sensitivity to primordial gravitational waves will probe physics at the highest energy scales and cross a major theoretically motivated threshold in constraints on inflation. The CMB-S4 search for new light relic particles will shed light on the early Universe 10,000 times farther back than current experiments can reach. Finally, the CMB-S4 Legacy Survey covering 70% of the sky with unprecedented sensitivity and angular resolution from centimeter- to millimeter-wave observing bands will have a profound and lasting impact on Astronomy and Astrophysics and provide a powerful complement to surveys at other wavelengths, such as LSST and WFIRST, and others yet to be imagined. We emphasize that these critical thresholds cannot be reached without the level of community and agency investment and commitment required by CMB-S4. In particular, the CMB-S4 science goals are out of the reach of any projected precursor experiment by a significant margin.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN74204 , Bulletin of the American Astronomical Society (e-ISSN 0002-7537); 51; 7; 209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-04
    Description: The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne telescope mission to search for inflationary gravitational waves from the early universe. PIPER employs two 32 40 arrays of superconducting transition-edge sensors, which operate at 100 mK. An open bucket Dewar of liquid helium maintains the receiver and telescope optics at 1.7 K. We describe the thermal design of the receiver and sub-Kelvin cooling with a continuous adiabatic demagnetization refrigerator (CADR). The CADR operates between 70 and 130 mK and provides 10 W cooling power at 100 mK, nearly five times the loading of the two detector assemblies. We describe electronics and software to robustly control the CADR, overall CADR performance in flightlike integrated receiver testing, and practical considerations for implementation in the balloon float environment.
    Keywords: Instrumentation and Photography; Engineering (General)
    Type: GSFC-E-DAA-TN75883 , Review of Scientific Instruments (ISSN 0034-6748) (e-ISSN 1089-7623); 90; 9; 095104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We present multi-wavelength detections of nine candidate gravitationally-lensed dusty starforming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the ACT equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of 4.1 (+ 1.1, -10) (68 percent confidence interval), as expected for 218 GHz selection and an apparent total infrared luminosity of log 10(uL(sub IR)/solar luminosity) = 13.86(+0.33, -0.30), which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is square root of mu d = 4.2 (+ 1.7, -1.0) kpc, further evidence of strong lensing of multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modeling without the assumption of opticaly thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = (4.2+, -1.9) of dust around the peak in the modified blackbody spectrum (lambda obs is less than 500 micrometers), a result that is robust to model choice.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN36237 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-2966); ujme 464; 1; 968-984
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: We present the temperature and polarization angular power spectra measuredby the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time datacollected during 2013-14 using two detector arrays at 149 GHz, from 548 deg(exp. 2) of sky onthe celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the CDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. The new ACTPol dataprovide information on damping tail parameters. The joint uncertainty on the number of neutrino species and the primordial helium fraction is reduced by 20% when adding ACTPol to Planck temperature data alone.
    Keywords: Astrophysics; Statistics and Probability
    Type: GSFC-E-DAA-TN44626 , Journal of Cosmology and Astroparticle Physics (e-ISSN 1475-7516); 2017; 6; 031
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...