ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (5)
  • 2015-2019  (5)
  • 1
    Publication Date: 2018-09-14
    Description: While processes associated with initiation and maintenance of oceanic detachment faults are becoming better constrained, much less is known about the tectonic and magmatic conditions that lead to fault abandonment. Here we present results from near-bottom investigations using the submersible Alvin and autonomous underwater vehicle Sentry at a recently extinct detachment fault near 13°48′N, Mid-Atlantic Ridge, that allow documentation of the final stages of fault activity and magmatism. Seafloor imagery, sampling, and near-bottom magnetic data show that the detachment footwall is intersected by an ~850 m-wide volcanic outcrop including pillow lavas. Saturation pressures in these vesicular basalts, based on dissolved H2O and CO2, are less than their collection pressures, which could be explained by eruption at a shallower level than their present depth. Sub-bottom profiles reveal that sediment thickness, a loose proxy for seafloor age, is ~2 m greater on top of the volcanic terrain than on the footwall adjacent to the hanging-wall cutoff. This difference could be explained by current-driven erosion in the axial valley or by continued slip after volcanic emplacement, on either a newly formed or pre-existing fault. Since current speeds near the footwall are unlikely to be sufficient to cause significant erosion, we favor the hypothesis that detachment slip continued after the episode of magmatism, consistent with growing evidence that oceanic detachments can continue to slip despite hosting magmatic intrusions. ©2018. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-01
    Description: Improved constraints on the mechanical behavior of magma chambers is essential for understanding volcanic processes; however, the role of crystal mush on the mechanical evolution of magma chambers has not yet been systematically studied. Existing magma chamber models typically consider magma chambers to be isolated melt bodies surrounded by elastic crust. In this study, we develop a physical model to account for the presence and properties of crystal mush in magma chambers and investigate its impact on the mechanical processes during and after injection of new magma. Our model assumes the magma chamber to be a spherical body consisting of a liquid core of fluid magma within a shell of crystal mush that behaves primarily as a poroelastic material. We investigate the characteristics of time-dependent evolution in the magma chamber, both during and after the injection, and find that quantities such as overpressure and tensile stress continue to evolve after the injection has stopped, a feature that is absent in elastic (mushless) models. The time scales relevant to the postinjection evolution vary from hours to thousands of years, depending on the micromechanical properties of the mush, the viscosity of magma, and chamber size. We compare our poroelastic results to the behavior of a magma chamber with an effectively viscoelastic shell and find that only the poroelastic model displays a time scale dependence on the size of the chamber for any fixed mush volume fraction. This study demonstrates that crystal mush can significantly influence the mechanical behaviors of crustal magmatic reservoirs. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-01
    Description: To investigate the initial phases of magmatism at the leading edge of the upwelling mantle plume, we mapped, photographed, and collected samples from two long, deep-water lava flows located at the western base of the Galápagos Platform using the remotely operated vehicle Hercules. Lavas were recovered from four areas on the seafloor west of Fernandina volcano, including the western flow fronts of two deep-water flows, heavily sedimented terrain between the two flows, and the eastern, shallower end of one flow. The sediment cover and morphologies are distinct between the western flow fronts and the eastern region based on seafloor imagery, suggesting that the long lava flows are not a single eruptive unit. Major and trace element concentrations reveal both tholeiitic and alkalic compositions and support the interpretation that multiple eruptive units comprise the deep-water flows. Alkalic lavas have higher [La/Sm]N ratios (2.05–2.12) and total alkali contents (5.18–5.40) compared to tholeiitic lavas, which have [La/Sm]N ratios ranging from 1.64 to 1.68 and total alkali contents ranging from 3.07 to 4.08 wt%. Radiogenic isotope ratios are relatively homogeneous, suggesting a similar mantle source. We use petrologic models to assess three alternative mechanisms for the formation of the alkalic magmas: (1) high-pressure crystallization of clinopyroxene, (2) mixing of high silica and mafic magmas, and (3) variable extents of melting of the same mantle source. Our modeling indicates that the alkalic samples form from lower extents of melting compared to the tholeiitic lavas and suggests that the deep-water alkalic lavas are analogous to the initial, preshield building phase observed south of Hawaii and at the base of Loihi Seamount. ©2018. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-01
    Description: Here we present volatile, major, and trace element concentrations of 64 olivine-hosted melt inclusions from the Lucky Strike segment on the mid-Atlantic ridge. Lucky Strike is one of two locations where a crustal melt lens has been seismically imaged on a slow-spreading ridge. Vapor-saturation pressures, calculated from CO 2 and H 2 O contents of Lucky Strike melt inclusions, range from approximately 300-3000 bars, corresponding to depths of 0.5-9.9 km below the seafloor. Approximately 50% of the melt inclusions record crystallization depths of 3-4 km, corresponding to the seismically imaged melt lens depth, while an additional ∼35% crystallize at depths 〉 4 km. This indicates that while crystallization is focused within the melt lens, significant crystallization also occurs in the lower crust and/or upper mantle. The melt inclusions span a range of major and trace element concentrations from normal to enriched basalts. Trace element ratios at all depths are heterogeneous, suggesting that melts are not efficiently homogenized in the mantle or crust, despite the presence of a melt lens. This is consistent with the transient nature of magma chambers proposed for slower-spreading ridges. To investigate the petrogenesis of the melt inclusion compositions, we compare the measured trace element compositions to theoretical melting calculations that consider variations in the melting geometry and heterogeneities in the mantle source. The full range of compositions can be produced by slight variations in the proportion of an Azores plume and depleted upper mantle components and changes in the total extent of melting. © 2014. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123(11), (2018): 9376-9406. doi: 10.1029/2018JB015985.
    Description: Improved constraints on the mechanical behavior of magma chambers is essential for understanding volcanic processes; however, the role of crystal mush on the mechanical evolution of magma chambers has not yet been systematically studied. Existing magma chamber models typically consider magma chambers to be isolated melt bodies surrounded by elastic crust. In this study, we develop a physical model to account for the presence and properties of crystal mush in magma chambers and investigate its impact on the mechanical processes during and after injection of new magma. Our model assumes the magma chamber to be a spherical body consisting of a liquid core of fluid magma within a shell of crystal mush that behaves primarily as a poroelastic material. We investigate the characteristics of time‐dependent evolution in the magma chamber, both during and after the injection, and find that quantities such as overpressure and tensile stress continue to evolve after the injection has stopped, a feature that is absent in elastic (mushless) models. The time scales relevant to the postinjection evolution vary from hours to thousands of years, depending on the micromechanical properties of the mush, the viscosity of magma, and chamber size. We compare our poroelastic results to the behavior of a magma chamber with an effectively viscoelastic shell and find that only the poroelastic model displays a time scale dependence on the size of the chamber for any fixed mush volume fraction. This study demonstrates that crystal mush can significantly influence the mechanical behaviors of crustal magmatic reservoirs.
    Description: We thank James Rice, Tushar Mittal, Chris Huber and Helge Gonnerman for useful discussions in the early stages of this work. S. Adam Soule was supported by National Science Foundation Grant OCE‐1333492. Meghan Jones was supported by the U.S. Department of Defense through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. The numerical codes used for computing the results in the work can be found at https://github.com/YangVol/MushyChamber.
    Description: 2019-03-30
    Keywords: Magma chamber ; Crystal mush ; Poroelasticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...