ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA
  • 2015-2019  (3,696)
  • 1920-1924  (1)
Collection
Keywords
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bertler, Nancy A; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Urban; Winstrup, Mai; Vallelonga, Paul T; Lee, James E; Brook, Edward J; Severinghaus, Jeffrey P; Fudge, Tyler J; Keller, Elizabeth D; Baisden, W Troy; Hindmarsh, Richard C A; Neff, Peter D; Blunier, Thomas; Edwards, Ross L; Mayewski, Paul Andrew; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle Astrid; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G; Delmonte, Barbara; Eling, Lukas; Ellis, Aja A; Ganesh, Shruthi; Golledge, Nicholas R; Haines, Skylar A; Handley, Michael; Hawley, Robert L; Hogan, Chad M; Johnson, Katelyn M; Korotkikh, Elena; Lowry, Daniel P; Mandeno, Darcy; McKay, Robert M; Menking, James A; Naish, Timothy R; Noerling, Caroline; Ollive, Agathe; Orsi, Anais J; Proemse, Bernadette C; Pyne, Alexander R; Pyne, Rebecca L; Renwick, James; Scherer, Reed P; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B; Steig, Eric J; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A; Winton, Victoria H L; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin (2018): The Ross Sea dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years. Climate of the Past, 14, 193-214, https://doi.org/10.5194/cp-14-193-2018
    Publication Date: 2024-03-18
    Description: High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually-dated ice core record from the eastern Ross Sea. Comparison of the Roosevelt Island Climate Evolution (RICE) ice core records with climate reanalysis data for the 1979-2012 calibration period shows that RICE records reliably capture temperature and snow precipitation variability of the region. RICE is compared with data from West Antarctica (West Antarctic Ice Sheet Divide Ice Core) and the western (Talos Dome) and eastern (Siple Dome) Ross Sea. For most of the past 2,700 years, the eastern Ross Sea was warming with perhaps increased snow accumulation and decreased sea ice extent. However, West Antarctica cooled whereas the western Ross Sea showed no significant temperature trend. From the 17th Century onwards, this relationship changes. All three regions now show signs of warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea, but increasing in the western Ross Sea. Analysis of decadal to centennial-scale climate variability superimposed on the longer term trend reveal that periods characterised by opposing temperature trends between the Eastern and Western Ross Sea have occurred since the 3rd Century but are masked by longer-term trends. This pattern here is referred to as the Ross Sea Dipole, caused by a sensitive response of the region to dynamic interactions of the Southern Annual Mode and tropical forcings.
    Keywords: AGE; Age, maximum/old; Age, minimum/young; DEPTH, ice/snow; ICEDRILL; Ice drill; Isotope ratio mass spectrometry; RICE; Roosevelt Island, Antarctica; δ Deuterium
    Type: Dataset
    Format: text/tab-separated-values, 8136 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bakker, Dorothee C E; Pfeil, Benjamin; Landa, Camilla S; Metzl, Nicolas; O'Brien, Kevin M; Olsen, Are; Smith, Karl; Cosca, Catherine E; Harasawa, Sumiko; Jones, Steve D; Nakaoka, Shin-Ichiro; Nojiri, Yukihiro; Schuster, Ute; Steinhoff, Tobias; Sweeney, Colm; Takahashi, Taro; Tilbrook, Bronte; Wada, Chisato; Wanninkhof, Rik; Alin, Simone R; Balestrini, Carlos F; Barbero, Leticia; Bates, Nicolas R; Bianchi, Alejandro A; Bonou, Frédéric Kpédonou; Boutin, Jacqueline; Bozec, Yann; Burger, Eugene; Cai, Wei-Jun; Castle, Robert D; Chen, Liqi; Chierici, Melissa; Currie, Kim I; Evans, Wiley; Featherstone, Charles; Feely, Richard A; Fransson, Agneta; Goyet, Catherine; Greenwood, Naomi; Gregor, Luke; Hankin, Steven; Hardman-Mountford, Nicolas J; Harlay, Jérôme; Hauck, Judith; Hoppema, Mario; Humphreys, Matthew P; Hunt, Christopher W; Huss, Betty; Ibánhez, J Severino P; Johannessen, Truls; Keeling, Ralph F; Kitidis, Vassilis; Körtzinger, Arne; Kozyr, Alexander; Krasakopoulou, Evangelia; Kuwata, Akira; Landschützer, Peter; Lauvset, Siv K; Lefèvre, Nathalie; Lo Monaco, Claire; Manke, Ansley; Mathis, Jeremy T; Merlivat, Liliane; Millero, Frank J; Monteiro, Pedro M S; Munro, David R; Murata, Akihiko; Newberger, Timothy; Omar, Abdirahman M; Ono, Tsuneo; Paterson, Kristina; Pearce, David J; Pierrot, Denis; Robbins, Lisa L; Saito, Shu; Salisbury, Joe; Schlitzer, Reiner; Schneider, Bernd; Schweitzer, Roland; Sieger, Rainer; Skjelvan, Ingunn; Sullivan, Kevin; Sutherland, Stewart C; Sutton, Adrienne; Tadokoro, Kazuaki; Telszewski, Maciej; Tuma, Matthias; van Heuven, Steven; Vandemark, Doug; Ward, Brian; Watson, Andrew J; Xu, Suqing (2016): A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2), 383-413, https://doi.org/10.5194/essd-8-383-2016
    Publication Date: 2024-05-02
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.5 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.4 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This living data publication documents changes in the methods and data sets used in this new version of the SOCAT data collection compared with previous publications of this data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014).
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 3657 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-02
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis activity by the international marine carbon research community (〉100 contributors). SOCAT version 4 has 18.5 million quality-controlled, surface ocean fCO2 (fugacity of carbon dioxide) observations with an accuracy of better than 5 µatm from 1957 to 2015 for the global oceans and coastal seas. Automation of data upload and initial data checks speeds up data submission and allows annual releases of SOCAT from version 4 onwards. SOCAT enables quantification of the ocean carbon sink and ocean acidification and evaluation of ocean biogeochemical models. SOCAT represents a milestone in research coordination, data access, biogeochemical and climate research and in informing policy.
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 1265 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-14
    Keywords: Calcium carbonate production of carbon; Calcium carbonate production of carbon, standard deviation; Coccolithophoridae, total; Cruise/expedition; DATE/TIME; DEPTH, water; Emiliania huxleyi; Incubation duration; LATITUDE; LONGITUDE; Method comment; Ocean and sea region; Percentage; Primary production of carbon; Primary production of carbon, standard deviation; Principal investigator; Reference/source; Station label; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 35037 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Steig, Eric J; Ding, Quinghua; White, James W C; Küttel, Meinrad; Rupper, Summer B; Neumann, T A; Neff, Peter D; Gallant, Ailie J E; Mayewski, Paul Andrew; Taylor, Kendrick C; Hoffmann, Georg; Dixon, Daniel A; Schoenemann, Spruce W; Markle, Bradley R; Fudge, Tyler J; Schneider, David P; Schauer, Andrew J; Teel, Rebecca P; Vaughn, Bruce H; Burgener, Landon; Williams, Jessica; Korotkikh, Elena (2013): Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nature Geoscience, 6(5), 372-375, https://doi.org/10.1038/NGEO1778
    Publication Date: 2024-03-18
    Description: Changes in atmospheric circulation over the past five decades have enhanced the wind-driven inflow of warm ocean water onto the Antarctic continental shelf, where it melts ice shelves from below. Atmospheric circulation changes have also caused rapid warming over the West Antarctic Ice Sheet, and contributed to declining sea-ice cover in the adjacent Amundsen-Bellingshausen seas. It is unknown whether these changes are part of a longer-term trend. Here, we use water-isotope (d18O) data from an array of ice-core records to place recent West Antarctic climate changes in the context of the past two millennia. We find that the d18O of West Antarctic precipitation has increased significantly in the past 50 years, in parallel with the trend in temperature, and was probably more elevated during the 1990s than at any other time during the past 200 years. However, d18O anomalies comparable to those of recent decades occur about 1% of the time over the past 2,000 years. General circulation model simulations suggest that recent trends in d18O and climate in West Antarctica cannot be distinguished from decadal variability that originates in the tropics. We conclude that the uncertain trajectory of tropical climate variability represents a significant source of uncertainty in projections of West Antarctic climate and ice-sheet change.
    Keywords: Antarctica, west; DEPTH, ice/snow; ICEDRILL; Ice drill; WAIS_divide; δ18O, water
    Type: Dataset
    Format: text/tab-separated-values, 601 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-05
    Description: The West Antarctic Ice Sheet (WAIS) Divide deep ice core WD2014 chronology, consisting of ice age, gas age, delta-age and uncertainties therein. The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP; Sigl et al., 2015, Sigl et al., 2016) have been dated using annual-layer counting based on counting of annual layers observed in the chemical, dust and electrical conductivity records. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing of the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13. We demonstrated that over the Holocene WD2014 was consistently accurate to better than 0.5% of the age. The chronology for the deep part of the core (below 2850m; 67.8-31.2 ka BP; Buizert et al., 2015) is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. We synchronized the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record.
    Keywords: Age, difference; Age, difference error; Age, error; annual-layer-counting; Antarctica; Antarctica, west; Calendar age; Calendar age, standard error; chronology; DEPTH, ice/snow; Gas age; Greenland; ice-core; ICEDRILL; Ice drill; Methane; WAIS; WAIS Divide; WDC-06A; West Antarctic Ice Sheet Divide ice core project
    Type: Dataset
    Format: text/tab-separated-values, 392326 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bakker, Dorothee C E; O'Brien, Kevin M; Pfeil, Benjamin; Currie, Kim I; Kozyr, Alexander; Landa, Camilla S; Lauvset, Siv K; Metzl, Nicolas; Nakaoka, Shin-Ichiro; Nojiri, Yukihiro; Nonaka, Isao; Olsen, Are; Omar, Abdirahman M; Pierrot, Denis; Saito, Shu; Smith, Karl; Sutton, Adrienne; Sullivan, Kevin; Tilbrook, Bronte; Wanninkhof, Rik; Akl, John; Alin, Simone R; Barbero, Leticia; Barrera, Kira E; Beaumont, Laurence; Becker, Meike; Bernard, Christophe; Bott, Randy; Byrne, Robert; Cai, Wei-Jun; Cosca, Catherine E; Cross, Jessica; Daly, Kendra L; Danguy, Théo; De Carlo, Eric Heinen; Dietrich, Colin; Feely, Richard A; Fiedler, Björn; Glockzin, Michael; Gove, Matthew D; Goyet, Catherine; Guillot, Antoine; Hales, Burke; Hartman, Sue E; Herndon, Julian; Hoppema, Mario; Humphreys, Matthew P; Hunt, Christopher W; Huss, Betty; Hydes, David; Ibánhez, J Severino P; Ishii, Masao; Johannessen, Truls; Jones, Steve D; Kitidis, Vassilis; Knorr, Paul O; Körtzinger, Arne; Kosugi, Naohiro; Lee, Charity M; Lefèvre, Nathalie; Lo Monaco, Claire; Liu, Xuewu; Maenner, Stacy M; Manke, Ansley; Manzello, Derek P; Mathis, Jeremy T; Mickett, John; Millero, Frank J; Monacci, Natalie; Monteiro, Pedro; Morell, Julio; Munro, David R; Musielewicz, Sylvia; Neill, Craig; Newberger, Timothy; Newton, Jan; Noakes, Scott; Noh, Jae Hoon; Ohman, Mark; Ólafsdóttir, Sólveig Rósa; Ólafsson, Jón; Osborne, John; Padín, Xose Antonio; Rehder, Gregor; Reimer, Janet J; Robbins, Lisa L; Rutgersson, Anna; Sabine, Christopher L; Salisbury, Joe; Sasano, Daisuke; Schlitzer, Reiner; Schuster, Ute; Send, Uwe; Sieger, Rainer; Skjelvan, Ingunn; Steinhoff, Tobias; Sutherland, Stewart C; Sweeney, Colm; Takahashi, Taro; Telszewski, Maciej; Vandemark, Doug; van Heuven, Steven; Wallace, Douglas WR; Woosley, Ryan J; Wynn, Jonathan G; Yates, Kimberly Kaye (in prep.): Version 5 of the Surface Ocean CO2 Atlas (SOCAT).
    Publication Date: 2024-05-02
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis activity by the international marine carbon research community (〉100 contributors). SOCAT version 5 has 21.5 million quality-controlled, surface ocean fCO2 (fugacity of carbon dioxide) observations from 1957 to 2017 for the global oceans and coastal seas. Calibrated sensor data are also available. Automation allows annual, public releases. SOCAT data is discoverable, accessible and citable. SOCAT enables quantification of the ocean carbon sink and ocean acidification and evaluation of ocean biogeochemical models. SOCAT, which celebrates its 10th anniversary in 2017, represents a milestone in biogeochemical and climate research and in informing policy.
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 823 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-02
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis activity by the international marine carbon research community (〉100 contributors). SOCATv2019 has 25.7 million quality-controlled, surface ocean fCO2 (fugacity of carbon dioxide) observations from 1957 to 2019 for the global oceans and coastal seas. Calibrated sensor data are also available. Automation allows annual, public releases. SOCAT data is discoverable, accessible and citable. SOCAT enables quantification of the ocean carbon sink and ocean acidification and evaluation of ocean biogeochemical models. SOCAT represents a milestone in biogeochemical and climate research and in informing policy. This publication contains the individual cruise files that are new or updated from SOCATv6, with cruise QC flags A-E and all fCO2 WOCE flags. The synthesis file hosted in NOAA NCEI (see other version) contains A-D cruises and WOCE flag 2 (good) data. To download the SOCATv2019 data product in other formats or subsets, please go to www.socat.info.
    Keywords: SOCAT; SOCATv2019; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 531 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-14
    Keywords: Ambystoma californiense; Ammonium; Amphibia; Area; BIO; Biology; Bufo boreas; California, USA; Carbon, organic, dissolved; Comment; Conductivity, electrolytic; Distance; Distance to landmark; East_Bay_CA; Fish; Invertebrata; Land use; Larvae; LATITUDE; LONGITUDE; Nitrogen, total; Number; Number of individuals; Number of species; ORDINAL NUMBER; Percentage; Perimeter; pH; Presence/absence; Pseudacris regilla; Rana catesbeiana; Rana draytonii; Ranavirus prevalence; Salinity; Sampling date; Site; Taricha granulosa; Taricha torosa; Total counts; Total dissolved solids; Vegetation, cover; Vertebrata
    Type: Dataset
    Format: text/tab-separated-values, 6682 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Petrovic, Alexander; Lantzsch, Hendrik; Schwenk, Tilmann; Marquardt, J; Titschack, Jürgen; Hanebuth, Till J J (2019): Post-LGM upward shift of the Mediterranean Outflow Water recorded in a contourite drift off NW Spain. Marine Geology, 407, 334-349, https://doi.org/10.1016/j.margeo.2018.11.015
    Publication Date: 2023-03-03
    Description: The NW Iberian continental margin is characterised by a complex morphology and by a sedimentary system which was highly dynamic over glacial to interglacial times. The sedimentary history of the continental slope was strongly influenced by the interaction of bottom currents with topographic highs of structural origin leading to the accumulation of several sediment drifts. A combined analysis of gravity cores from different water depth with hydroacoustic data reveals the vertical behaviour of the upper Mediterranean Outflow Water (MOW) core after the Last Glacial Maximum (LGM). A coarser grained interval during Deglacial and early Holocene times (17.2 to 9.9 cal ka BP) points to an increase in bottom current strength. This increase in velocity was probably related to oceanic density fronts, which migrated through the 300 m thick transition zone between the underlying Labrador Sea Water and the overlying MOW. Radiocarbon dates timed the current strengthening to 17.2 cal ka BP, and a following weakening of the bottom current to 13.3 cal ka BP at 1965 m water depth and to 9.9 cal ka BP at 1885 m water depth. The depth-dependent current weakening suggests an upward shifting of the transition zone by 80 m that was related either to an overall shallowing of MOW or a vertical contraction of this water mass. The upward movement happened over a time interval of approximately 3.4 thousand years. In addition sediment core analysis reveals significant lateral heterogeneities within cm to dm thick sediment layers in the contourite drift. These heterogeneities suggest a need of a detailed core coverage across current-influenced deposits for palaeoceanographic studies to minimize misinterpretations.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...