ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-20
    Description: Stable oxygen isotope records from central Greenland suggest disproportionally large long-term surface-air temperature (SAT) variability during the last glacial maximum (LGM) relative to preindustrial times. Large perturbations in mean atmospheric circulation and its variability forced by extensive Northern Hemisphere ice sheet coverage has been suggested as cause for the enhanced Greenland SAT variability. Here, we assess the factors driving Greenland SAT variability during the LGM by means of dedicated climate model simulations and find remote forcing from the Pacific of critical importance. Atmospheric teleconnections from the Interdecadal Pacific Oscillation (IPO), a multidecadal oscillation of sea-surface temperature in the Pacific Ocean, strongly intensify under LGM conditions, driving enhanced surface wind variability over Greenland, which in turn amplifies SAT variability by anomalous atmospheric heat transport. A major role of the IPO in forcing Greenland SAT variability also is supported by a number of models from the Paleoclimate Modelling Intercomparison Project Phase III.
    Keywords: Binary Object; Binary Object (File Size); Binary Object (Media Type); Description; LGM; Paleo Modelling; PalMod
    Type: Dataset
    Format: text/tab-separated-values, 26 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: Long-term predictability of the North Atlantic sea surface temperature (SST) is commonly attributed to buoyancy-forced changes of the Atlantic Meridional Overturning Circulation. Here we investigate the role of surface wind stress forcing in decadal hindcasts as another source of extratropical North Atlantic SST predictability. For this purpose, a global climate model is forced by reanalysis (ERA-interim) wind stress anomalies over the period 1979-2017. The simulated climate states serve as initial conditions for decadal hindcasts. Significant skill in predicting detrended observed annual SST anomalies is observed over the extratropical central North Atlantic with anomaly correlation coefficients exceeding 0.6 at lead times of 4 to 7 years. The skill is insensitive to the calendar month of initialization and linked to upper-ocean heat content anomalies that lead anomalous SSTs by several years.
    Keywords: Binary Object; Binary Object (File Size); Binary Object (Media Type); Description
    Type: Dataset
    Format: text/tab-separated-values, 36 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: We explore the predictability of tropical Atlantic sea surface temperature (SST) and the potential influence of climate model bias on SST predictions over the tropical Atlantic. Two statistical methods are used to examine the skill in forecasting tropical Atlantic SST anomalies (SSTAs): linear inverse modeling (LIM) and analogue forecast (AF). The statistical models are trained either with observations or with data from two control integrations of the Kiel Climate Model (KCM), which only differ with respect to the resolution of its atmospheric component. Observed SSTAs suggest that Tropical Atlantic climatic changes are potentially predictable at lead times of up to 6 months over large parts of the Tropical Atlantic. The SSTAs from the KCM version employing a high-resolution atmosphere model (KCM-HRES) is potentially predictable at a level comparable to that derived from the observations, whereas the SSTAs from the KCM version employing a low-resolution atmosphere model (KCM-LRES) is considerably less potentially predictable. We show that the enhanced potential predictability in the former KCM version can be very likely related to the improved representation of ENSO-like dynamics and its seasonality. We used the statistical models in true forecast mode, i.e. the prediction schemes were trained from data independent of the forecast period. Using observed SSTAs to train the LIM yields significant skill in forecasting observed SSTAs at lead times of up to 4 months across all calendar months, which is mostly restricted to the northern and equatorial western Tropical Atlantic. Similar patterns, but with lower skill, are found when the models’ SSTAs are used, in which LIM trained with the KCM-HRES generally yields higher skills than that from the KCM-LRES. Applying AF yields significant skills in predicting observed SSTAs over the same regions, but the forecast skills are considerably smaller. When the SSTAs together with either sea level pressure (SLP) anomalies or dynamic sea level (DSL) anomalies from the KCM are used to construct the statistical models, the prediction of observed equatorial Atlantic SSTAs can be improved, with significant skill enhancement at lead times of up to 4 months in limited regions. An optimal initial SSTA pattern is found, which results in the largest transient anomaly growth over the entire domain. Independent of external forces, this amplification is developed internally; meaning that the seasonal forecast might be more sensitive to initial conditions than currently thought.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Observations and reanalysis products are used to investigate the substantial weakening in the southeastern tropical Atlantic sea‐surface temperature (SST) variability since 2000. Relative to 1982‐1999, the March‐April‐May SST variability in the Angola‐Benguela area (ABA) has decreased by more than 30 %. Both equatorial remote forcing and local forcing are known to play an important role in driving SST variability in the ABA. Compared to 1982‐1999, since 2000 equatorial remote forcing had less influence on ABA SSTs whereas local forcing has become more important. In particular, the robust correlation that existed between the equatorial zonal wind stress and the ABA SSTs has substantially weakened, suggesting less influence of Kelvin waves on ABA SSTs. Moreover, the strong correlation linking the South Atlantic Anticyclone and the ABA SSTs has reduced. Finally, multidecadal surface warming of the ABA could also have played a role in the weakening of the interannual SST variability.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Observations during the satellite era 1979–2018 only depict small sea surface temperature (SST) trends over the Equatorial Atlantic cold tongue region in boreal summer. This lack of surface warming of the cold tongue, termed warming hole here, denotes an 11% amplification of the mean SST annual cycle. The warming hole is driven by a shoaling of the equatorial thermocline, linked to increased wind stress forcing, and damped by the surface turbulent heat fluxes. The satellite era warming deficit is not unusual during the twentieth century—similar weak trends were also observed during the 1890s–1910s and 1940s–1960s. The tendency for surface cooling appears to reflect an interaction of external forcing, which controls the timing and magnitude of the cooling, with the intrinsic variability of the climate system. The hypothesis for externally forced modulation of internal variability is supported by climate model simulations forced by the observed time-varying concentrations of atmospheric greenhouse gases and natural aerosols. These show that increased greenhouse forcing warmed the cold tongue and aerosols cooled it during the satellite era. However, internal variability, as derived from control integrations with fixed, preindustrial values of greenhouse gases and aerosols, can potentially cause larger cooling than observed during the satellite era. Large uncertainties remain on the relative roles of external forcing and intrinsic variability in both observations and coupled climate models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: The North Atlantic (NA) basin-averaged sea surface temperature (NASST) is often used as an index to study climate variability in the NA sector. However, there is still some debate on what drives it. Based on observations and climate models, an analysis of the different influences on the NASST index and its low-pass filtered version, the Atlantic multidecadal oscillation (AMO) index, is provided. In particular, the relationships of the two indices with some of its mechanistic drivers including the Atlantic meridional overturning circulation (AMOC) are investigated. In observations, the NASST index accounts for significant SST variability over the tropical and subpolar NA. The NASST index is shown to lump together SST variability originating from different mechanisms operating on different time scales. The AMO index emphasizes the subpolar SST variability. In the climate models, the SST-anomaly pattern associated with the NASST index is similar. The AMO index, however, only represents pronounced SST variability over the extratropical NA, and this variability is significantly linked to the AMOC. There is a sensitivity of this linkage to the cold NA SST bias observed in many climate models. Models suffering from a large cold bias exhibit a relatively weak linkage between the AMOC and AMO and vice versa. Finally, the basin-averaged SST in its unfiltered form, which has been used to question a strong influence of ocean dynamics on NA SST variability, mixes together multiple types of variability occurring on different time scales and therefore underemphasizes the role of ocean dynamics in the multidecadal variability of NA SSTs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Stable oxygen isotope records from central Greenland suggest disproportionally large long‐term surface air temperature (SAT) variability during the Last Glacial Maximum (LGM) relative to preindustrial times. Large perturbations in mean atmospheric circulation and its variability forced by extensive Northern Hemisphere ice sheet coverage have been suggested as cause for the enhanced Greenland SAT variability. Here, we assess the factors driving Greenland SAT variability during the LGM by means of dedicated climate model simulations and find remote forcing from the Pacific of critical importance. Atmospheric teleconnections from the Interdecadal Pacific Oscillation (IPO), a multidecadal oscillation of sea surface temperature in the Pacific Ocean, strongly intensify under LGM conditions, driving enhanced surface wind variability over Greenland, which in turn amplifies SAT variability by anomalous atmospheric heat transport. A major role of the IPO in forcing Greenland SAT variability also is supported by a number of models from the Paleoclimate Modeling Intercomparison Project Phase III
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Highlights • New Early Cretaceous South Atlantic TEX86 samples and climate modelling. • Systematic differences in Cretaceous isoGDGT abundances. • Regional similarities to modern Mediterranean and Red Sea sediments. Regional TEX86-temperature calibration enables model-data congruence for OAE 1a. Abstract The Cretaceous Period (145-66 Ma) provides an opportunity to obtain insights into the adaptation of the climate system to increased atmospheric greenhouse gas concentrations. The organic paleothermometer TEX86 is one of the few proxies available for reconstructing quantitative estimates of upper ocean temperatures of this time period. Here we show that the sedimentary TEX86 signal in the Early Cretaceous North and South Atlantic shows systematic differences to other Cretaceous samples. In particular, the relative increase in the fractional abundances of the crenarchaeol isomer compared to crenarchaeol exhibits similarities with surface sediments from the modern Mediterranean and Red Sea. Dedicated climate model simulations suggest that the formation of warm and saline deep waters in the restricted North and South Atlantic may have influenced TEX86 export dynamics leading to a warm bias in reconstructed upper ocean temperatures. Applying a regional calibration from the modern Mediterranean and Red Sea to corresponding TEX86 data significantly improves the model-data fit for the Aptian Oceanic Anoxic Event 1a and the overall comparison with other temperature proxies for the Early Cretaceous. Our results demonstrate the need to consider regional and temporal changes of the TEX86-temperature relation for the reconstruction of deep-time ocean temperatures.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Dass unser Umgang mit fossilen Brennstoffen zu einer Erwärmung des globalen Klimas führt, ist seit Jahrzehnten bekannt. Doch anstatt endlich den Anstieg der weltweiten Temperatur zu begrenzen, steigern wir unseren Ausstoß von CO2 noch. Angesichts populistischer Regierungen, die den Klimawandel wider besseres Wissen leugnen, aber auch Bewegungen wie Fridays for Future, ergreift der prominente Klima- und Meeresforscher Mojib Latif noch einmal das Wort. Sein Credo: Die Physik lässt nicht mit sich verhandeln. Mit der Natur kann man keine Kompromisse schließen. Und: Schnelles Handeln ist nötig. Nüchtern und gut verständlich präsentiert Latif die Fakten. Ein flammender Appell, diese Fakten endlich ernst zu nehmen. Mit einem Sonderkapitel zu den Auswirkungen der Corona-Krise auf unseren Umgang mit dem Klimawandel.
    Type: Book , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: A long-standing problem in state-of-the-art climate models is the Tropical Atlantic (TA) warm sea surface temperature (SST) bias, which goes along with major biases in large-scale atmospheric circulation. Here we show that TA-sector climate changes forced by increasing atmospheric carbon dioxide (CO2) levels are sensitive to model resolution. Two versions of a climate model employing greatly varying atmospheric resolution and exhibiting very different warm bias strength are compared. The version with high atmospheric resolution features a small SST bias and simulates an eastward amplified SST warming over the equatorial Atlantic, in line with the observed SST trends since the mid-20th century. On the contrary, the version with coarse atmospheric resolution exhibits a large SST bias and projects relatively uniform SST changes across the equatorial Atlantic. In both model versions, the warming pattern resembles the pattern of interannual SST variability simulated under present-day conditions. Atmospheric changes also vastly differ among the two climate model versions. In the version with small SST bias, a deep atmospheric response is simulated with a major change in the Walker circulation and strongly enhanced rainfall over the equatorial region, whereas the atmospheric response is much weaker and of rather different character in the model with large SST bias. This study suggests that higher atmospheric resolution in climate models may enhance global warming projections over the TA sector.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...