ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-19
    Description: In this study, we investigate whether a better representation of precipitation in the Amazon basin arises through an explicit representation of convection and whether it is related to the representation of organized systems. In addition to satellite data, we use ensemble simulations of the ICON‐NWP model at storm‐resolving (2.5–5.0 km) scales with explicit convection (E‐CON) and coarse resolutions, with parameterized convection (P‐CON). The main improvements in the representation of Amazon precipitation by E‐CON are in the distribution of precipitation intensity and the spatial distribution in the diurnal cycle. By isolating precipitation from organized convective systems (OCS), it is shown that many of the well simulated precipitation features in the Amazon arise from the distribution of these systems. The simulated and observed OCS are classified into 6 clusters which distinguish nocturnal and diurnal OCS. While the E‐CON ensembles capture the OCS, especially their diurnal cycle, their frequency is reduced compared to observations. Diurnal clusters are influenced by surface processes such as cold pools, which aid to the propagation of OCS. Nocturnal clusters are rather associated with strong low‐level easterlies, possibly related to the Amazonian low‐level jet. Our results also show no systematic improvement with a twofold grid refinement and remaining biases related to stratiform features of OCS suggest that yet unresolved processes play an important role for correctly representing precipitating systems in the Amazon.
    Description: Plain Language Summary: The Amazon basin is a relevant element of the Earth system because it influences the global water and carbon cycle, as well as it constitutes a unique ecosystem. Over this important region, conventional climate models do not simulate basic features of rainfall given their inability to resolve this physical process due to their coarse spatial resolution. In this study, we use high‐resolution simulations that allow an explicit representation of such physical process (moist convection) and compare them with a set of coarse‐resolution simulations and observed precipitation. We find that improvements in the representation of Amazon rainfall, such as the distribution of light and high intensity rain rates, as well as the spatial variability of the diurnal cycle, are explained by the explicit representation of moist convection. Moreover, these improvements arise from the representation of big and organized systems that produce intense rainfall (OCS). We find that particular environmental conditions are associated with the OCS according to their time of occurrence. Diurnal OCS are mainly influenced by interactions with the surface, while nocturnal OCS are related to strong low‐level winds. Some of the remaining discrepancies with observed OCS do not show improvements when refining the grid by a factor of two.
    Description: Key Points: An explicit representation of convection enables the emergence of organized systems (OCS) leading to improved simulations of Amazon rainfall. Propagating cold‐pools and strong low‐level easterlies are related to the occurrence of diurnal and nocturnal OCS, respectively. Systematic biases in the size, intensity and nocturnal precipitation phase of OCS are insensitive to a twofold refinement in resolution.
    Description: Max Planck Society for the Advancement of Science
    Description: European Horizon 2020 project CONSTRAIN
    Description: https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
    Description: https://www.ncei.noaa.gov/data/cmorph-high-resolution-global-precipitation-estimates/access/30min/8km
    Description: https://www.hydrosheds.org/products/hydrobasins
    Description: https://esgf-data.dkrz.de/projects/cmip6-dkrz/
    Description: https://pure.mpg.de/
    Keywords: ddc:551.6 ; Amazon rainfall ; organized precipitating systems ; storm‐resolving simulation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-13
    Description: Using the global and coupled ICOsahedral Nonhydrostatic model with the Sapphire configuration (ICON‐S) and a grid spacing of 5 km, we describe seasonal and diurnal features of the tropical rainbelt and assess the limits of ICON‐S in representing tropical precipitation. ICON‐S shows that, by resolving meso‐beta scale process, the rainbelt structure and its seasonality (zonal and meridional migration and enlargement) is reproduced, with better performance over land than over ocean and with a very high degree of agreement to observations. ICON‐S especially struggles in capturing the seasonal features of the tropical rainbelt over the oceans of the Eastern Hemisphere, an issue associated with a cold sea surface temperature (SST) bias at the equator. ICON‐S also shows that a perfect representation of the diurnal cycle of precipitation over land is not a requirement to capture the seasonal features of the rainbelt over land, while over the ocean, 5 km is sufficient to adequately represent the diurnal cycle of precipitation.
    Description: Plain Language Summary: Over the tropics, precipitation falls in distinct bands, that span the circumference of the Earth. These bands migrate from the Northern to the Southern Hemisphere and vice versa following the seasonal migration of the sun. Their center of mass also varies east‐west, as well as their area. Where rain ends up falling is of key importance but conventional climate models relying on statistical approaches to simulate convection cannot represent these characteristics. Here we report on the results of simulations on a global domain and, to our knowledge, for the first time integrated with an atmosphere‐ocean coupled over a full seasonal cycle and with a grid spacing fine enough to explicitly represent convection and Mesoscale Ocean eddies. We show that such simulations can reproduce many aspects of the seasonal migration of the rainbelt over land. For instance, the north‐south and east‐west migration of the rainbelt as well as its expansion during the summer season are well captured. This is also the case for the rainbelt in the eastern Pacific and the Atlantic, but not in the Eastern Hemisphere, where the poor representation of the sea surface temperature pattern distorts the representation of the rainbelt and its seasonal characteristics.
    Description: Key Points: In one year of simulation, the ICOsahedral Nonhydrostatic model with the Sapphire configuration (ICON‐S) reproduces the seasonal features of the tropical rainbelt over land with high agreement with observations. In the eastern Pacific and Atlantic, the seasonal structure and movement of the rainbelt are also reproduced by ICON‐S. Biases in sea surface temperature explain the struggles of ICON‐S in simulating the oceanic rainbelt of the Eastern Hemisphere.
    Description: Hans‐Ertel Centre for Weather Research
    Description: European Union's Horizon 2020
    Description: DKRZ compute time
    Description: https://doi.org/10.17617/3.1XTSR6
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Description: https://doi.org/10.5067/GPM/IMERG/3B-HH/06
    Description: https://www.cen.uni-hamburg.de/en/icdc/data/atmosphere/imerg-precipitation-amount.html
    Description: https://www.cen.uni-hamburg.de/en/icdc/data/ocean/hadisst1.html
    Description: https://hdl.handle.net/21.11116/0000-000B-4BAE-E
    Keywords: ddc:551.6 ; tropical precipitation ; rainbelt ; seasonal migration ; ICON-S ; modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6 W m−2, or -2.0 to -0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds. Key Points: - An assessment of multiple lines of evidence supported by a conceptual model provides ranges for aerosol radiative forcing of climate change - Aerosol effective radiative forcing is assessed to be between -1.6 and -0.6 W m−2 at the 16–84% confidence level - Although key uncertainties remain, new ways of using observations provide stronger constraints for models
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...