ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (3)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2022-03-23
    Description: Many state‐of‐the‐art climate models do not simulate the Atlantic Water (AW) layer in the Arctic Ocean realistically enough to address the question of future Arctic Atlantification and its associated feedback. Biases concerning the AW layer are commonly related to insufficient resolution and excessive mixing in the ocean component as well as unrealistic Atlantic‐Arctic Ocean exchange. Based on sensitivity experiments with FESOM1.4, the ocean–sea‐ice component of the global climate model AWI‐CM1, we show that even if all impediments for simulating AW realistically are addressed in the ocean model, new biases in the AW layer develop after coupling to an atmosphere model. By replacing the wind forcing over the Arctic with winds from a coupled simulation we show that a common bias in the atmospheric sea level pressure (SLP) gradient and its associated wind bias lead to differences in surface stress and Ekman transport. Fresh surface water gets redistributed leading to changes in halosteric height distribution. Those changes lead to strengthening of the anticyclonic surface circulation in the Canadian Basin, so that the deep counterflow carrying warm AW gets reversed and a warm bias in the Canadian Basin develops. The SLP and anticyclonic wind bias in the Nordic Seas weaken the cyclonic circulation leading to reduced AW transport into the Arctic Ocean through Fram Strait but increased AW transport through the Barents Sea Opening. These effects together lead to a cold bias in the Eurasian Basin. An underestimation of sea ice concentration can significantly amplify the induced ocean biases.
    Description: Plain Language Summary: Coupled global climate models are used to predict anthropogenic climate change along with its impacts. The Arctic has experienced amplified warming in the recent decades compared to global mean warming and therefore is one region of intense climate research. In this context Atlantification of the Arctic Ocean has become a high priority topic. Atlantification describes the increasing impact of oceanic heat from the Atlantic Water (AW) layer of the Arctic Ocean on the sea ice cover. In climate models, the direction and strength of simulated AW circulation around the Arctic Ocean is known to be sensitive to ocean grid resolution, parametrization, boundary and surface forcing or a combination thereof. Here we show that biases in the atmospheric component of climate models can interrupt and even reverse the simulated AW circulation at depth. Such biases can be further amplified by a negative bias in simulated sea ice cover. This study shows how these surface biases can negatively impact the deep ocean circulation.
    Description: Key Points: Many state‐of‐the‐art climate models fail to simulate the properties of the Atlantic Water layer in the Arctic Ocean realistically. Biases in Arctic sea level pressure and surface winds in atmosphere models can reverse Atlantic Water circulation. The underestimation of sea‐ice cover amplifies this problem further.
    Description: European Union's Horizon 2020 Research and Innovation program
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Keywords: ddc:551.46
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-29
    Description: The impact of Arctic sea ice decline on the weather and climate in midlatitudes is still much debated, with observations suggesting a strong link and models a much weaker link. In this study, we use the atmospheric model OpenIFS in a set of model experiments following the protocol outlined in the Polar Amplification Model Intercomparison Project (PAMIP) to investigate whether the simulated atmospheric response to future changes in Arctic sea ice fundamentally depends on model resolution. More specifically, we increase the horizontal resolution of the model from 125 to 39 km with 91 vertical levels; in a second step, resolution is further increased to 16 km with 137 levels in the vertical. The model does produce a response to sea ice decline with a weaker midlatitude Atlantic jet and increased blocking in the high-latitude Atlantic, but no sensitivity to resolution can be detected with 100 members. Furthermore, we find that the ensemble convergence toward the mean is not impacted by the model resolutions considered here.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-29
    Description: We developed a new version of the Alfred Wegener Institute Climate Model (AWI-CM3), which has higher skills in representing the observed climatology and better computational efficiency than its predecessors. Its ocean component FESOM2 has the multi-resolution functionality typical for unstructured-mesh models while still featuring a scalability and efficiency similar to regular-grid models. The atmospheric component OpenIFS (CY43R3) enables the use of latest developments in the numerical weather prediction community in climate sciences. In this paper we describe the coupling of the model components and evaluate the model performance on a variable resolution (25–125 km) ocean mesh and a 61 km atmosphere grid, which serves as a reference and starting point for other on-going research activities with AWI-CM3. This includes the exploration of high and variable resolution, the development of a full Earth System Model as well as the creation of a new sea ice prediction system. At this early development stage and with the given coarse to medium resolutions, the model already features above CMIP6-average skills in representing the climatology and competitive model throughput. Finally we identify remaining biases and suggest further improvements to be made to the model.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...