ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-08-11
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-30
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-29
    Description: We developed a new version of the Alfred Wegener Institute Climate Model (AWI-CM3), which has higher skills in representing the observed climatology and better computational efficiency than its predecessors. Its ocean component FESOM2 has the multi-resolution functionality typical for unstructured-mesh models while still featuring a scalability and efficiency similar to regular-grid models. The atmospheric component OpenIFS (CY43R3) enables the use of latest developments in the numerical weather prediction community in climate sciences. In this paper we describe the coupling of the model components and evaluate the model performance on a variable resolution (25–125 km) ocean mesh and a 61 km atmosphere grid, which serves as a reference and starting point for other on-going research activities with AWI-CM3. This includes the exploration of high and variable resolution, the development of a full Earth System Model as well as the creation of a new sea ice prediction system. At this early development stage and with the given coarse to medium resolutions, the model already features above CMIP6-average skills in representing the climatology and competitive model throughput. Finally we identify remaining biases and suggest further improvements to be made to the model.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-08-02
    Description: We explore the amplitude and frequency of Atlantic Multi-decadal Variability (AMV) in a 2,000-year pre-industrial control simulation with the FOCI-OpenIFS coupled climate model. We find a statistically significant AMV-like mode on the 20-year and 80-year time scales. We also find a mode of multi-centennial variability where the North Atlantic Ocean shifts a regime of a warm period to/from a cold period of ~400 years. The warm period is characterised by mean states of a stronger and deeper Atlantic Meridional Overturning Circulation (AMOC), less Arctic sea ice, and more deep convection in the Labrador Sea than the cold period. We find that the AMV has a much higher amplitude in the cold period compared to the warm period, and also that the lead-lag relationship between the AMOC and the AMV is different between the two periods. In the warm period, AMOC leads the AMV; a strong AMOC enhances the oceanic poleward heat transport which warms the North Atlantic Ocean both at the surface and deeper down, producing a positive AMV. In the cold period, however, AMV leads AMOC; a warm surface anomaly reduces the sea ice in the Labrador Sea which enhances local air-sea interactions and deep convection, and later a stronger AMOC. In the cold period, the warm anomaly associated with the AMV does not extend below the mixed layer, suggesting that it is driven by the atmosphere and not ocean dynamics.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-08-09
    Description: The global ocean plays a crucial role in modulating Earth’s present and future climate. In addition, most anthropogenic heat is stored in the ocean, causing thermal expansion of seawater, and consequently raising the global mean sea level. However, there is a large disagreement across climate models in the projection of ocean heat content (OHC) change and sea level rise. Here, we investigate climate model spread in OHC change in response to surface flux perturbations applied to climate models as part of the Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) simulations. The inter-model spread in OHC change, decomposed by physical processes, is large where the OHC change (i.e., signal) is large in response to individual surface flux forcing anomalies and mostly at similar locations as in the control simulations. OHC spread per basin is largest in the Atlantic Ocean response to perturbed surface heat flux, and Southern Ocean has largest spread in response to perturbed surface freshwater and momentum fluxes. This study shows that the largest inter-model spread in the vertical transport of heat is from resolved and mesoscale advective processes, and it is mostly seen in the eddy energetic and frontal regions both with and without perturbed forcings. The regional spread in OHC change and resolved advection is ~2 times larger than the internal variability in response to surface heat flux perturbation and within the range of unforced (~internal) variability response to surface freshwater and wind stress forcing at most places.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-28
    Description: The Antarctic Circumpolar Current (ACC) is shaped by westerly winds, a meridional density gradient, topography and mesoscale activity. Ekman-driven isopycnal sloping is counterbalanced by eddy mixing. Many global climate models deal with a Southern Ocean (SO) warm bias and bottom water formation issues. Eddy processes are often parameterized in absence of sufficient resolution. Increasingly frequent, ocean grids at 1/4˚–1/12˚ are applied allowing for some representation of the mesoscale and eddy parameterization is thus turned off. We use FOCI, a global climate model based on ECHAM and NEMO atmosphere and ocean models with the capability of two-way nesting in the ocean to discuss related effects. Grid refinement south of 28˚S from 1/2˚ to 1/10˚ enables a realistic representation of mesoscale dynamics in the latitude band of the ACC, whereas standard GM-parameterization is applied to the non-eddying model. In both model configurations the deep, dense water layer is eroding over the first 50 years of the simulation after starting from observation-based initial fields. ACC strength declines from initially 165 Sv to 110–120 Sv. In the nested, eddying simulation the dense water layer recovers until model year 100 and ACC strength resumes to about 150 Sv. In contrast, ACC strength keeps declining in the eddy-parameterized run, which also starts to form a significant SO warm bias (see contribution presented by M. Ödalen in this session). We shed light on the mechanisms leading to the recovery of the ACC on multi-decadal timescale and the role of mesoscale dynamics therein.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-11
    Description: Biases in mid- to high-latitude Southern Hemisphere ocean and atmosphere temperatures, winds, currents, and other properties are a common issue in climate models. FOCI is a fully coupled climate model employing a 1/2° NEMO3.6 ocean and a T63 ECHAM6.3 atmosphere as default, including modules representing sea ice (LIM2) and land surface (JSBACH) processes. Similar to some CMIP models, FOCI has a warm bias in the surface and intermediate ocean across the Southern Ocean, and jet stream winds in the Southern Hemisphere are displaced equatorward. This wind bias is theorized to be partly due to biases in sea surface properties. The Antarctic Circumpolar Current (ACC) is weak in FOCI compared to observations, which is common in models of intermediate resolution. In this study, we test approaches of improving the above-mentioned biases. Using AGRIF nesting, we run additional simulations where ocean resolution south of 28°S is increased from 1/2˚ to 1/10°, which yields a stronger ACC transport, as discussed by Martin et al. in this session. Shortening the ocean-atmosphere coupling time step, from 3-hourly to hourly, clearly reduces the warm bias, and in consequence, improves the representation of sea ice and water mass properties at depth. This links to a weaker Weddell Gyre. The change in coupling frequency is effective at default as well as at nest resolution. Further improvements in simulated surface temperature and sea ice are found with reduced iso-neutral diffusion. The jet stream position remains unchanged, suggesting that it is insensitive to the surface temperature and sea ice biases.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...