ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-07-04
    Description: Collapse of permafrost coasts delivers large quantities of particulate organic carbon (POC) to arctic coastal areas. With rapidly‐changing environmental conditions, sediment and organic carbon (OC) mobilization and transport pathways are also changing. Here, we assess the sources and sinks of POC in the highly‐dynamic nearshore zone of Herschel Island ‐ Qikiqtaruk (Yukon, Canada). Our results show that POC concentrations sharply decrease, from 15.9 to 0.3 mg L‐1, within the first 100 – 300 meters offshore. Simultaneously, radiocarbon ages of POC drop from 16,400 to 3,600 14C years, indicating rapid settling of old permafrost POC to underlying sediments. This suggests that permafrost OC is, apart from a very narrow resuspension zone (〈5 m water depth), predominantly deposited in nearshore sediments. While long‐term storage of permafrost OC in marine sediments potentially limits biodegradation and its subsequent release as greenhouse gas, resuspension of fine‐grained, OC‐rich sediments in the nearshore zone potentially enhances OC turnover.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(10), (2020): 2849-2871, https://doi.org/10.1175/JPO-D-20-0086.1.
    Description: The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 106 m3 s−1), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.
    Description: A.P., R.S.P., F.B., D.J.T., and A.L.R. were funded by Grants OCE-1259618 and OCE-1756361 from the National Science Foundation. I.L.B, F.S., and J.H. were supported by U.S. National Science Foundation Grants OCE-1258823 and OCE-1756272. Mooring data from MA2 was funded by the European Union 7th Framework Programme (FP7 2007-2013) under Grant 308299 (NACLIM) and the Horizon 2020 research and innovation program under Grant 727852 (Blue-Action). J.K. and M.O. acknowledge EU Horizon 2020 funding Grants 727852 (Blue-action) and 862626 (EuroSea) and from the German Ministry of Research and Education (RACE Program). G.W.K.M. acknowledges funding from the Natural Sciences and Engineering Research Council.
    Keywords: Boundary currents ; Convection ; Deep convection ; Transport ; In situ oceanic observations ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, F., Lozier, M. S., Holliday, N. P., Johns, W. E., Le Bras, I. A., Moat, B. I., Cunningham, S. A., & de Jong, M. F. Observation-based estimates of heat and freshwater exchanges from the subtropical North Atlantic to the Arctic. Progress in Oceanography, 197, (2021): 102640, https://doi.org/10.1016/j.pocean.2021.102640.
    Description: Continuous measurements from the OSNAP (Overturning in the Subpolar North Atlantic Program) array yield the first estimates of trans-basin heat and salinity transports in the subpolar latitudes. For the period from August 2014 to May 2018, there is a poleward heat transport of 0.50 ± 0.05 PW and a poleward salinity transport of 12.5 ± 1.0 Sv across the OSNAP section. Based on the mass and salt budget analyses, we estimate that a surface freshwater input of 0.36 ± 0.05 Sv over the broad subpolar-Arctic region is needed to balance the ocean salinity change created by the OSNAP transports. The overturning circulation is largely responsible for setting these heat and salinity transports (and the derived surface freshwater input) derived from the OSNAP array, while the gyre (isopycnal) circulation contributes to a lesser, but still significant, extent. Despite its relatively weak overturning and heat transport, the Labrador Sea is a strong contributor to salinity and freshwater changes in the subpolar region. Combined with trans-basin transport estimates at other locations, we provide new estimates for the time-mean surface heat and freshwater divergences over a wide domain of the Arctic-North Atlantic region to the north and south of the OSNAP line. Furthermore, we estimate the total heat and freshwater exchanges across the surface area of the extratropical North Atlantic between the OSNAP and the RAPID-MOCHA (RAPID Meridional Overturning Circulation and Heat-flux Array) arrays, by combining the cross-sectional transports with vertically-integrated ocean heat and salinity content. Comparisons with the air-sea heat and freshwater fluxes from atmospheric reanalysis products show an overall consistency, yet with notable differences in the magnitudes during the observation time period.
    Description: F.L. and M.S.L. were supported by the National Science Foundation (OCE-1948335). W.E.J. was supported by the National Science Foundation grants RAPID (OCE-1332978 and OCE-1926008) and OSNAP (OCE-1756231 and OCE-1948198). I.A.L.B. was supported by the National Science Foundation (OCE-1756272 and OCE-2038481). B.M. was supported by the UK Natural Environment Research Council for the RAPID-AMOC program and the ACSIS program (NE/N018044/1). S.A.C. and N.P.H. were supported by UK NERC National Capability programmes the Extended Ellett Line and CLASS (NE/R015953/1), NERC grants UK OSNAP (NE/K010875/1, NE/K010875/2, NE/K010700/1), UK OSNAP Decade (NE/T00858X/1, NE/T008938/1). S.A.C. received additional supports from the Blue-Action project (European Union’s Horizon 2020 research and innovation program, grant 727852) and the iAtlantic project (European Union’s Horizon 2020 research and innovation program, grant 210522255).
    Keywords: Oceanic heat and salinity transports ; Surface heat and freshwater exchange ; Overturning and gyre circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, F., Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., de Jong, M. F., DeYoung, B., Fraser, N., Fried, N., Han, G., Holliday, N. P., Holte, J., Houpert, L., Inall, M. E., Johns, W. E., Jones, S., Johnson, C., Karstensen, J., Le Bras, I. A., P. Lherminier, X. Lin, H. Mercier, M. Oltmanns, A. Pacini, T. Petit, R. S. Pickart, D. Rayner, F. Straneo, V. Thierry, M. Visbeck, I. Yashayaev & Zhou, C. Subpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation. Nature Communications, 12(1), (2021): 3002, https://doi.org/10.1038/s41467-021-23350-2.
    Description: Changes in the Atlantic Meridional Overturning Circulation, which have the potential to drive societally-important climate impacts, have traditionally been linked to the strength of deep water formation in the subpolar North Atlantic. Yet there is neither clear observational evidence nor agreement among models about how changes in deep water formation influence overturning. Here, we use data from a trans-basin mooring array (OSNAP—Overturning in the Subpolar North Atlantic Program) to show that winter convection during 2014–2018 in the interior basin had minimal impact on density changes in the deep western boundary currents in the subpolar basins. Contrary to previous modeling studies, we find no discernable relationship between western boundary changes and subpolar overturning variability over the observational time scales. Our results require a reconsideration of the notion of deep western boundary changes representing overturning characteristics, with implications for constraining the source of overturning variability within and downstream of the subpolar region.
    Description: We acknowledge funding from the Physical Oceanography Program of the U.S. National Science Foundation (OCE-1259398, OCE-1756231, OCE-1948335); the U.K. Natural Environment Research Council (NERC) National Capability programs the Extended Ellett Line and CLASS (NE/R015953/1), and NERC grants UK-OSNAP (NE/K010875/1, NE/K010875/2, NE/K010700/1) and U.K. OSNAP Decade (NE/T00858X/1, NE/T008938/1). Additional support was received from the European Union 7th Framework Program (FP7 2007-2013) under grant 308299 (NACLIM), the Horizon 2020 research and innovation program under grants 727852 (Blue-Action), 862626 (EuroSea). We also acknowledge support from the Royal Netherlands Institute for Sea Research, the Surface Water and Ocean Topography-Canada (SWOT-C), Canadian Space Agency, the Aquatic Climate Change Adaptation Services Program (ACCASP), Fisheries and Oceans Canada, an Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, and from the China’s national key research and development projects (2016YFA0601803), the National Natural Science Foundation of China (41925025) and the Fundamental Research Funds for the Central Universities (201424001). Support for the 53°N array by the RACE program of the German Ministry BMBF is acknowledged, as is the contribution from Fisheries and Oceans Canada’s Atlantic Zone Monitoring Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tison, J.-L., Maksym, T., Fraser, A. D., Corkill, M., Kimura, N., Nosaka, Y., Nomura, D., Vancoppenolle, M., Ackley, S., Stammerjohn, S., Wauthy, S., Van der Linden, F., Carnat, G., Sapart, C., de Jong, J., Fripiat, F., & Delille, B. Physical and biological properties of early winter Antarctic sea ice in the Ross Sea. Annals of Glaciology, 61(83), (2020): 241–259, https://doi.org/10.1017/aog.2020.43.
    Description: This work presents the results of physical and biological investigations at 27 biogeochemical stations of early winter sea ice in the Ross Sea during the 2017 PIPERS cruise. Only two similar cruises occurred in the past, in 1995 and 1998. The year 2017 was a specific year, in that ice growth in the Central Ross Sea was considerably delayed, compared to previous years. These conditions resulted in lower ice thicknesses and Chl-a burdens, as compared to those observed during the previous cruises. It also resulted in a different structure of the sympagic algal community, unusually dominated by Phaeocystis rather than diatoms. Compared to autumn-winter sea ice in the Weddell Sea (AWECS cruise), the 2017 Ross Sea pack ice displayed similar thickness distribution, but much lower snow cover and therefore nearly no flooding conditions. It is shown that contrasted dynamics of autumnal-winter sea-ice growth between the Weddell Sea and the Ross Sea impacted the development of the sympagic community. Mean/median ice Chl-a concentrations were 3–5 times lower at PIPERS, and the community status there appeared to be more mature (decaying?), based on Phaeopigments/Chl-a ratios. These contrasts are discussed in the light of temporal and spatial differences between the two cruises.
    Description: S. Stammerjohn was supported by the PIPERS and LTER Programs of the U.S. National Science Foundation, ANT-1341606 (S. Stammerjohn and J. Cassano, U Colorado) and ANT-0823101 (H. Ducklow, LDEO/Columbia University), respectively. Steve Ackley (UTSA) was supported by the PIPERS program of the U.S. National Science Foundation ANT-1341717 and by NASA Grant 80NSSC19M0194 to the Center for Adv. Meas. in Extreme Environments at UTSA.Ted Maksym (WHOI) was supported by the PIPERS program of the U.S. National Science Foundation ANT-1341513. This research was supported by the Belgian F.R.S-FNRS (project ISOGGAP and IODIne, contract T.0268.16 and J.0262.17, respectively). Fanny Van der Linden, Sarah Wauthy, Gauthier Carnat, Célia Sapart and Bruno Delille are PhD students, postdoctoral researchers and research associate, respectively, of the Belgian F.R.S.-FNRS. This work was also supported by the Australian Government's Cooperative Research Centre program through the Antarctic Climate & Ecosystems Cooperative Research Centre, and by the Australian Research Council's Special Research Initiative for Antarctic Gateway Partnership (Project ID SR140300001). Daiki Nomura was supported by grants from the Japan Society for the Promotion of Science (#17H04715) and the National Institute for Polar Research through Project Research KP-303 (ROBOTICA) and #28-14.
    Keywords: Antarctic glaciology ; biogeochemistry ; sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-08-22
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chmiel, R., Lanning, N., Laubach, A., Lee, J.-M., Fitzsimmons, J., Hatta, M., Jenkins, W., Lam, P., McIlvin, M., Tagliabue, A., & Saito, M. Major processes of the dissolved cobalt cycle in the north and equatorial Pacific Ocean. Biogeosciences, 19(9), (2022): 2365–2395, https://doi.org/10.5194/bg-19-2365-2022.
    Description: Over the past decade, the GEOTRACES and wider trace metal geochemical community has made substantial contributions towards constraining the marine cobalt (Co) cycle and its major biogeochemical processes. However, few Co speciation studies have been conducted in the North and equatorial Pacific Ocean, a vast portion of the world's oceans by volume and an important end-member of deep thermohaline circulation. Dissolved Co (dCo) samples, including total dissolved and labile Co, were measured at-sea during the GEOTRACES Pacific Meridional Transect (GP15) expedition along the 152∘ W longitudinal from 56∘ N to 20∘ S. Along this transect, upper-ocean dCo (σ0〈26) was linearly correlated with dissolved phosphate (slope = 82±3, µmol : mol) due to phytoplankton uptake and remineralization. As depth increased, dCo concentrations became increasingly decoupled from phosphate concentrations due to co-scavenging with manganese oxide particles in the mesopelagic. The transect revealed an organically bound coastal source of dCo to the Alaskan Stream associated with low-salinity waters. An intermediate-depth hydrothermal flux of dCo was observed off the Hawaiian coast at the Loihi Seamount, and the elevated dCo was correlated with potential xs3He at and above the vent site; however, the Loihi Seamount likely did not represent a major source of Co to the Pacific basin. Elevated concentrations of dCo within oxygen minimum zones (OMZs) in the equatorial North and South Pacific were consistent with the suppression of oxidative scavenging, and we estimate that future deoxygenation could increase the OMZ dCo inventory by 18 % to 36 % over the next century. In Pacific Deep Water (PDW), a fraction of elevated ligand-bound dCo appeared protected from scavenging by the high biogenic particle flux in the North Pacific basin. This finding is counter to previous expectations of low dCo concentrations in the deep Pacific due to scavenging over thermohaline circulation. Compared to a Co global biogeochemical model, the observed transect displayed more extreme inventories and fluxes of dCo than predicted by the model, suggesting a highly dynamic Pacific Co cycle.
    Description: This research has been supported by the National Science Foundation (grant nos. OCE-1736599, OCE-1756138, OCE-1657781 and OCE-1736601) and the Horizon 2020 research and innovation program (BYONIC; grant no. 724289).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-07-21
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kim, S., Park, J.-H., & Kug, J.-S. Tropical origins of the record-breaking 2020 summer rainfall extremes in East Asia. Scientific Reports, 12(1), (2022): 5366, https://doi.org/10.1038/s41598-022-09297-4.
    Description: The East Asian countries have experienced heavy rainfalls in boreal summer 2020. Here, we investigate the dynamical processes driving the rainfall extremes in East Asia during July and August. The Indian Ocean basin warming in June can be responsible for the anticyclonic anomalies in the western North Pacific (WNP), which modulate the zonally-elongated rainfalls in East Asia during July through an atmospheric Rossby wave train. In August, the East Asian rainfall increase is also related to the anticyclonic anomalies in the subtropical WNP, although it is located further north. The north tropical Atlantic warming in June partly contributes to the subtropical WNP rainfall decrease in August through a subtropical teleconnection. Then the subtropical WNP rainfall decrease drives the local anticyclonic anomalies that cause the rainfall increase in East Asia during August. The tropical Indian Ocean anomalously warmed in June and the subtropical WNP rainfall decreased in August 2020, which played a role in modulating the WNP anticyclonic anomalies. Therefore, the record-breaking rainfall extremes in East Asia that occurred during summer 2020 can be explained by the teleconnections associated with the tropical origins among the Indian, Pacific, and Atlantic Oceans and their interbasin interactions.
    Description: This work is supported by the National Research Foundation of Korea (NRF-2018R1A5A1024958 & NRF-2021M3I6A1086808).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Dataset: GP16 Pb Dissolved
    Description: Dissolved Pb passing through a 0.2 um Acropak capsule filter from R/V Thomas G. Thompson cruise TN303 in the Eastern Tropical Pacific in 2013. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/644607
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1233749
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(8), (2020): 2393-2414, doi:10.1175/JPO-D-19-0210.1.
    Description: The Denmark Strait Overflow (DSO) is an important contributor to the lower limb of the Atlantic meridional overturning circulation (AMOC). Determining DSO formation and its pathways is not only important for local oceanography but also critical to estimating the state and variability of the AMOC. Despite prior attempts to understand the DSO sources, its upstream pathways and circulation remain uncertain due to short-term (3–5 days) variability. This makes it challenging to study the DSO from observations. Given this complexity, this study maps the upstream pathways and along-pathway changes in its water properties, using Lagrangian backtracking of the DSO sources in a realistic numerical ocean simulation. The Lagrangian pathways confirm that several branches contribute to the DSO from the north such as the East Greenland Current (EGC), the separated EGC (sEGC), and the North Icelandic Jet (NIJ). Moreover, the model results reveal additional pathways from south of Iceland, which supplied over 16% of the DSO annually and over 25% of the DSO during winter of 2008, when the NAO index was positive. The southern contribution is about 34% by the end of March. The southern pathways mark a more direct route from the near-surface subpolar North Atlantic to the North Atlantic Deep Water (NADW), and needs to be explored further, with in situ observations.
    Description: This work was financially supported by the U.S. National Science Foundation under Grant Numbers OAC-1835640, OCE-1633124, OCE-1433448, and OCE-1259210.
    Keywords: Abyssal circulation ; Bottom currents ; Lagrangian circulation/transport ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-11-03
    Description: EXport Processes in the Ocean from Remote Sensing (EXPORTS) is a large-scale NASA-led and NSF co-funded field campaign that will provide critical information for quantifying the export and fate of upper ocean net primary production (NPP) using satellite information and state of the art technology.
    Keywords: NASA/TM-20205007358
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...