ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (2)
Collection
Years
Year
  • 1
    Publication Date: 2022-12-06
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Houstin, A., Zitterbart, D., Winterl, A., Richter, S., Planas-Bielsa, V., Chevallier, D., Ancel, A., Fournier, J., Fabry, B., & Le Bohec, C. Biologging of emperor penguins-attachment techniques and associated deployment performance. PLoS One, 17(8), (2022): e0265849, https://doi.org/10.1371/journal.pone.0265849.
    Description: An increasing number of marine animals are equipped with biologgers, to study their physiology, behaviour and ecology, often for conservation purposes. To minimise the impacts of biologgers on the animals’ welfare, the Refinement principle from the Three Rs framework (Replacement, Reduction, Refinement) urges to continuously test and evaluate new and updated biologging protocols. Here, we propose alternative and promising techniques for emperor penguin (Aptenodytes forsteri) capture and on-site logger deployment that aim to mitigate the potential negative impacts of logger deployment on these birds. We equipped adult emperor penguins for short-term (GPS, Time-Depth Recorder (TDR)) and long-term (i.e. planned for one year) deployments (ARGOS platforms, TDR), as well as juvenile emperor penguins for long-term deployments (ARGOS platforms) in the Weddell Sea area where they had not yet been studied. We describe and qualitatively evaluate our protocols for the attachment of biologgers on-site at the colony, the capture of the animals and the recovery of the devices after deployment. We report unprecedented recaptures of long-term equipped adult emperor penguins (50% of equipped individuals recaptured after 290 days). Our data demonstrate that the traditional technique of long-term attachment by gluing the biologgers directly to the back feathers causes excessive feather breakage and the loss of the devices after a few months. We therefore propose an alternative method of attachment for back-mounted devices. This technique led to successful year-round deployments on 37.5% of the equipped juveniles. Finally, we also disclose the first deployments of leg-bracelet mounted TDRs on emperor penguins. Our findings highlight the importance of monitoring potential impacts of biologger deployments on the animals and the need to continue to improve methods to minimize disturbance and enhance performance and results.
    Description: This study was funded by the Centre Scientifique de Monaco with additional support from the LIA-647 and RTPI-NUTRESS (CSM/CNRS¬-University of Strasbourg), by The Penzance Endowed Fund and The Grayce B. Kerr Fund in Support of Assistant Scientists and by the Deutsche Forschungsgemeinschaft (DFG) grants ZI1525/3-1 in the framework of the priority program “Antarctic research with comparative investigations in Arctic ice areas”. Logistics and field efforts were supported by the Alfred Wegener Institute (AWI) within the framework of the program MARE.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-09-26
    Description: To protect the unique and rich biodiversity of the Southern Ocean, conservation measures such as marine protected areas (MPAs) have been implemented. Currently, the establishment of several additional protection zones is being considered based on the known habitat distributions of key species of the ecosystems including emperor penguins and other marine top predators. However, the distribution of such species at sea is often insufficiently sampled. Specifically, current distribution models focus on the habitat range of adult animals and neglect that immatures and juveniles can inhabit different areas. By tracking eight juvenile emperor penguins in the Weddell Sea over 1 year and performing a meta-analysis including previously known data from other colonies, we show that conservation efforts in the Southern Ocean are insufficient for protecting this highly mobile species, and particularly its juveniles. We find that juveniles spend approximately 90% of their time outside the boundaries of proposed and existing MPAs, and that their distribution extends beyond (greater than 1500 km) the species' extent of occurrence as defined by the International Union for Conservation of Nature. Our data exemplify that strategic conservation plans for the emperor penguin and other long-lived ecologically important species should consider the dynamic habitat range of all age classes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...