ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-25
    Description: Adult and juvenile emperor penguins (Aptenodytes forsteri) were fitted with different type of loggers (GPS, TDR, ARGOS) at Atka Bay colony (Queen Maud Land), Weddell Sea coast, in summer season 2017-2018 & 2018-2019. Capture, handling and deployment techniques are shared through several additional files.
    Keywords: Animal welfare; Atka_Bay; Atka Bay; Biologging; File content; File format; File name; File size; Guideline; OBSE; Observation; Penguin; Refinement; Seabirds; Study design; Tagging; Tracking; Uniform resource locator/link to file; Wildlife
    Type: Dataset
    Format: text/tab-separated-values, 70 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-06
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Houstin, A., Zitterbart, D., Winterl, A., Richter, S., Planas-Bielsa, V., Chevallier, D., Ancel, A., Fournier, J., Fabry, B., & Le Bohec, C. Biologging of emperor penguins-attachment techniques and associated deployment performance. PLoS One, 17(8), (2022): e0265849, https://doi.org/10.1371/journal.pone.0265849.
    Description: An increasing number of marine animals are equipped with biologgers, to study their physiology, behaviour and ecology, often for conservation purposes. To minimise the impacts of biologgers on the animals’ welfare, the Refinement principle from the Three Rs framework (Replacement, Reduction, Refinement) urges to continuously test and evaluate new and updated biologging protocols. Here, we propose alternative and promising techniques for emperor penguin (Aptenodytes forsteri) capture and on-site logger deployment that aim to mitigate the potential negative impacts of logger deployment on these birds. We equipped adult emperor penguins for short-term (GPS, Time-Depth Recorder (TDR)) and long-term (i.e. planned for one year) deployments (ARGOS platforms, TDR), as well as juvenile emperor penguins for long-term deployments (ARGOS platforms) in the Weddell Sea area where they had not yet been studied. We describe and qualitatively evaluate our protocols for the attachment of biologgers on-site at the colony, the capture of the animals and the recovery of the devices after deployment. We report unprecedented recaptures of long-term equipped adult emperor penguins (50% of equipped individuals recaptured after 290 days). Our data demonstrate that the traditional technique of long-term attachment by gluing the biologgers directly to the back feathers causes excessive feather breakage and the loss of the devices after a few months. We therefore propose an alternative method of attachment for back-mounted devices. This technique led to successful year-round deployments on 37.5% of the equipped juveniles. Finally, we also disclose the first deployments of leg-bracelet mounted TDRs on emperor penguins. Our findings highlight the importance of monitoring potential impacts of biologger deployments on the animals and the need to continue to improve methods to minimize disturbance and enhance performance and results.
    Description: This study was funded by the Centre Scientifique de Monaco with additional support from the LIA-647 and RTPI-NUTRESS (CSM/CNRS¬-University of Strasbourg), by The Penzance Endowed Fund and The Grayce B. Kerr Fund in Support of Assistant Scientists and by the Deutsche Forschungsgemeinschaft (DFG) grants ZI1525/3-1 in the framework of the priority program “Antarctic research with comparative investigations in Arctic ice areas”. Logistics and field efforts were supported by the Alfred Wegener Institute (AWI) within the framework of the program MARE.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-02
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Houstin, A., Zitterbart, D. P., Heerah, K., Eisen, O., Planas-Bielsa, V., Fabry, B., & Le Bohec, C. Juvenile emperor penguin range calls for extended conservation measures in the Southern Ocean. Royal Society Open Science, 9(8), (2022): 211708, https://doi.org/10.1098/rsos.211708.
    Description: To protect the unique and rich biodiversity of the Southern Ocean, conservation measures such as marine protected areas (MPAs) have been implemented. Currently, the establishment of several additional protection zones is being considered based on the known habitat distributions of key species of the ecosystems including emperor penguins and other marine top predators. However, the distribution of such species at sea is often insufficiently sampled. Specifically, current distribution models focus on the habitat range of adult animals and neglect that immatures and juveniles can inhabit different areas. By tracking eight juvenile emperor penguins in the Weddell Sea over 1 year and performing a meta-analysis including previously known data from other colonies, we show that conservation efforts in the Southern Ocean are insufficient for protecting this highly mobile species, and particularly its juveniles. We find that juveniles spend approximately 90% of their time outside the boundaries of proposed and existing MPAs, and that their distribution extends beyond (greater than 1500 km) the species' extent of occurrence as defined by the International Union for Conservation of Nature. Our data exemplify that strategic conservation plans for the emperor penguin and other long-lived ecologically important species should consider the dynamic habitat range of all age classes.
    Description: This study was funded by the Centre Scientifique de Monaco with additional support from the LIA-647 and RTPI-NUTRESS (CSM/CNRS/University of Strasbourg), by The Penzance Endowed Fund and The Grayce B. Kerr Fund in Support of Assistant Scientists and by the Deutsche Forschungsgemeinschaft (DFG) grant no. ZI1525/3-1 in the framework of the priority program ‘Antarctic research with comparative investigations in Arctic ice areas'.
    Keywords: Conservation biology ; Polar regions ; MPA network ; Seabirds ; Early life
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-02
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Leistenschneider, C., Le Bohec, C., Eisen, O., Houstin, A., Neff, S., Primpke, S., Zitterbart, D., Burkhardt-Holm, P., & Gerdts, G. No evidence of microplastic ingestion in emperor penguin chicks (Aptenodytes forsteri) from the Atka Bay colony (Dronning Maud Land, Antarctica). Science of The Total Environment, (2022): 158314, https://doi.org/10.1016/j.scitotenv.2022.158314.
    Description: Microplastic (〈5 mm; MP) pollution has been an emerging threat for marine ecosystems around the globe with increasing evidence that even the world's most remote areas, including Antarctica, are no longer unaffected. Few studies however, have examined MP in Antarctic biota, and especially those from Antarctic regions with low human activity, meaning little is known about the extent to which biota are affected. The aim of this study was to investigate, for the first time, the occurrence of MP in the emperor penguin (Aptenodytes forsteri), the only penguin species breeding around Antarctica during the austral winter, and an endemic apex predator in the Southern Ocean. To assess MP ingestion, the gizzards of 41 emperor penguin chicks from Atka Bay colony (Dronning Maud Land, Antarctica), were dissected and analyzed for MP 〉500 μm using Attenuated Total Reflection Fourier-transform Infrared (ATR-FTIR) spectroscopy. A total of 85 putative particles, mostly in the shape of fibers (65.9 %), were sorted. However, none of the particles were identified as MP applying state-of-the-art methodology. Sorted fibers were further evidenced to originate from contamination during sample processing and analyses. We find that MP concentrations in the local food web of the Weddell Sea and Dronning Maud Land coastal and marginal sea-ice regions; the feeding grounds to chick-rearing emperor penguin adults, are currently at such low levels that no detectable biomagnification is occurring via trophic transfer. Being in contrast to MP studies on other Antarctic and sub-Antarctic penguin species, our comparative discussion including these studies, highlights the importance for standardized procedures for sampling, sample processing and analyses to obtain comparable results. We further discuss other stomach contents and their potential role for MP detection, as well as providing a baseline for the long-term monitoring of MP in apex predator species from this region.
    Description: This study was supported by the Alfred Wegner Institute (AWI; Germany), the Ricola Foundation (Switzerland), the Freiwillige Akademische Gesellschaft Basel (FAG; Switzerland), the CNRS-France and the RTPI-NUTRESS (CSM Monaco & CNRS University of Strasbourg France).
    Keywords: Aptenodytes forsteri ; Microplastics ; ATR-FTIR ; Stomach content ; Antarctica ; Weddell Sea & Dronning Maud Land
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-26
    Description: To protect the unique and rich biodiversity of the Southern Ocean, conservation measures such as marine protected areas (MPAs) have been implemented. Currently, the establishment of several additional protection zones is being considered based on the known habitat distributions of key species of the ecosystems including emperor penguins and other marine top predators. However, the distribution of such species at sea is often insufficiently sampled. Specifically, current distribution models focus on the habitat range of adult animals and neglect that immatures and juveniles can inhabit different areas. By tracking eight juvenile emperor penguins in the Weddell Sea over 1 year and performing a meta-analysis including previously known data from other colonies, we show that conservation efforts in the Southern Ocean are insufficient for protecting this highly mobile species, and particularly its juveniles. We find that juveniles spend approximately 90% of their time outside the boundaries of proposed and existing MPAs, and that their distribution extends beyond (greater than 1500 km) the species' extent of occurrence as defined by the International Union for Conservation of Nature. Our data exemplify that strategic conservation plans for the emperor penguin and other long-lived ecologically important species should consider the dynamic habitat range of all age classes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-21
    Description: Microplastic (〈5 mm; MP) pollution has been an emerging threat for marine ecosystems around the globe with increasing evidence that even the world's most remote areas, including Antarctica, are no longer unaffected. Few studies however, have examined MP in Antarctic biota, and especially those from Antarctic regions with low human activity, meaning little is known about the extent to which biota are affected. The aim of this study was to investigate, for the first time, the occurrence of MP in the emperor penguin (Aptenodytes forsteri), the only penguin species breeding around Antarctica during the austral winter, and an endemic apex predator in the Southern Ocean. To assess MP ingestion, the gizzards of 41 emperor penguin chicks from Atka Bay colony (Dronning Maud Land, Antarctica), were dissected and analyzed for MP 〉500 μm using Attenuated Total Reflection Fourier-transform Infrared (ATR-FTIR) spectroscopy. A total of 85 putative particles, mostly in the shape of fibers (65.9 %), were sorted. However, none of the particles were identified as MP applying state-of-the-art methodology. Sorted fibers were further evidenced to originate from contamination during sample processing and analyses. We find that MP concentrations in the local food web of the Weddell Sea and Dronning Maud Land coastal and marginal sea-ice regions; the feeding grounds to chick-rearing emperor penguin adults, are currently at such low levels that no detectable biomagnification is occurring via trophic transfer. Being in contrast to MP studies on other Antarctic and sub-Antarctic penguin species, our comparative discussion including these studies, highlights the importance for standardized procedures for sampling, sample processing and analyses to obtain comparable results. We further discuss other stomach contents and their potential role for MP detection, as well as providing a baseline for the long-term monitoring of MP in apex predator species from this region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-21
    Description: Microplastic (〈5 mm; MP) pollution has been an emerging threat for marine ecosystems around the globe with increasing evidence that even the world's most remote areas, including Antarctica, are no longer unaffected. Few studies however, have examined MP in Antarctic biota, and especially those from Antarctic regions with low human activity, meaning little is known about the extent to which biota are affected. The aim of this study was to investigate, for the first time, the occurrence of MP in the emperor penguin (Aptenodytes forsteri), the only penguin species breeding around Antarctica during the austral winter, and an endemic apex predator in the Southern Ocean. To assess MP ingestion, the gizzards of 41 emperor penguin chicks from Atka Bay colony (Dronning Maud Land, Antarctica), were dissected and analyzed for MP 〉500 μm using Attenuated Total Reflection Fourier-transform Infrared (ATR-FTIR) spectroscopy. A total of 85 putative particles, mostly in the shape of fibers (65.9 %), were sorted. However, none of the particles were identified as MP applying state-of-the-art methodology. Sorted fibers were further evidenced to originate from contamination during sample processing and analyses. We find that MP concentrations in the local food web of the Weddell Sea and Dronning Maud Land coastal and marginal sea-ice regions; the feeding grounds to chick-rearing emperor penguin adults, are currently at such low levels that no detectable biomagnification is occurring via trophic transfer. Being in contrast to MP studies on other Antarctic and sub-Antarctic penguin species, our comparative discussion including these studies, highlights the importance for standardized procedures for sampling, sample processing and analyses to obtain comparable results. We further discuss other stomach contents and their potential role for MP detection, as well as providing a baseline for the long-term monitoring of MP in apex predator species from this region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...