ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (7)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2020-05-25
    Description: SUMMARY To evaluate the site response using both empirical approaches (e.g. standard spectral ratio, ground motion models (GMMs), generalized inversion techniques, etc.) and numerical 1-D/2-D analyses, the definition of the reference motion, that is the ground motion recorded at stations unaffected by site-effects due to topographic, stratigraphic or basin effects, is needed. The main objective of this work is to define a robust strategy to identify the seismic stations that can be considered as reference rock sites, using six proxies for the site response: three proxies are related to the analysis of geophysical and seismological data (the repeatable site term from the residual analysis, the resonance frequencies from horizontal-to-vertical spectral ratios on noise or earthquake signals, the average shear wave velocity in the first 30 m); the remaining ones concern geomorphological and installation features (outcropping rocks or stiff soils, flat topography and absence of interaction with structures). We introduce a weighting scheme to take into account the availability and the quality of the site information, as well as the fulfillment of the criterion associated to each proxy. We also introduce a hierarchical index, to take into account the relevance of the proposed proxies in the description of the site effects, and an acceptance threshold for reference rock sites identification. The procedure is applied on a very large data set, composed by accelerometric and velocimetric waveforms, recorded in Central Italy in the period 2008–2018. This data set is composed by more than 30 000 waveforms relative to 450 earthquakes in the magnitude range 3.2–6.5 and recorded by more than 450 stations. A total of 36 out of 133 candidate stations are identified as reference sites: the majority of them are installed on rock with flat topography, but this condition is not sufficient to guarantee the absence of amplifications, especially at high frequencies. Seismological analyses are necessary to exclude stations affected by resonances. We test the impact of using these sites by calibrating a GMMs. The results show that for reference rock sites the median predictions are reduced down to about 45 per cent at short periods in comparison to the generic rock motions.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-28
    Description: We apply a spectral decomposition approach to isolate the source spectra from propagation and site effects and, in turn, to estimate the source parameters of small-to-moderate earthquakes that occurred in central Italy. The data set is composed of about 400,000 waveforms relevant to 4111 earthquakes in the moment magnitude range 1.5–6.5, recorded by a high-density network of stations installed in the study area. We first investigate the reliability of the source parameters for small magnitudes through numerical simulations. We generate synthetic spectra for different source scaling models and near-surface attenuation effects, considering the source–station geometry and the data availability of the central Italy data set. Our analysis with synthetics shows that the spectral decomposition is effective in isolating the source contributions from other factors. Moreover, the analysis of the residual distributions suggests that moment magnitude 1.8 is the lower bound for the retrieval of reliable Brune’s source parameters, although we observe an increase of residual’s variability below magnitude 3, and the estimated source parameters could be biased below magnitude 2.3. Remarkably, the assessment of the stress drop Δσ for small events is strongly hampered by site-specific attenuation near the surface. In view of the results with synthetics, we analyze the source parameters of earthquakes recorded in central Italy. The corner frequency versus seismic moment relationship describes a source scaling in which Δσ increases with increasing moment magnitude Mw, the mean Δσ varying from 0.1 MPa for Mw5. In particular, Δσ increases mainly for Mw in the ranges 2.5–3 and 4.5–5.2. The corner frequencies estimated from the apparent source spectra do not show any dependence on hypocentral distance and magnitude, confirming that uncorrected anelastic attenuation effects do not significantly bias the results.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-31
    Description: We present Rapid Assessment of MOmeNt and Energy Service (RAMONES), a service for disseminating through a web interface, the estimates of seismic moment (M0) and radiated energy (ER) for earthquakes occurring in central Italy with local magnitudes above 1.7. The service is based on a fully-automatic procedure developed for downloading and processing open seismological data from the European Integrated Data Archive, Italian Civil Protection repository, and Incorporated Research Institutions for Seismology (IRIS). In its actual configuration, RAMONES uses the seismic catalog generated through the event webservice of the Italian Institute of Geophysics and Volcanology (compliant with International Federation of Digital Seismograph Networks standards) to guide the data download. The concept of RAMONES is to estimate M0 and ER from features extracted directly from recordings, namely the S-wave peak displacement (PDS) and the integral of the squared velocity (IV2S) evaluated over the S-wave window at local distances. A data set composed of 6515 earthquakes recorded in central Italy between 2008 and 2018 was used to calibrate the attenuation models relating M0 to PDS and ER to IV2S, including station corrections. The calibration values for M0 and ER were extracted from the source spectra obtained by applying a decomposition approach to the Fourier amplitude spectra known as the generalized inversion technique. To test the capabilities of RAMONES, we validate the attenuation models by performing residual analysis over about 60 earthquakes occurring in 2019 that were used for the spectral decomposition analysis but not considered in the calibration phase. Since January 2020, a testing operational phase has been running, and RAMONES has analyzed about 800 earthquakes by September 2020. The distribution of the source parameters and their relevant scaling relationships are automatically computed and disseminated in the form of maps, parametric tables, figures, and reports available through the RAMONES web interface.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-09
    Description: SUMMARY To constrain seismic anisotropy under and around the Alps in Europe, we study SKS shear wave splitting from the region densely covered by the AlpArray seismic network. We apply a technique based on measuring the splitting intensity, constraining well both the fast orientation and the splitting delay. Four years of teleseismic earthquake data were processed, from 723 temporary and permanent broad-band stations of the AlpArray deployment including ocean-bottom seismometers, providing a spatial coverage that is unprecedented. The technique is applied automatically (without human intervention), and it thus provides a reproducible image of anisotropic structure in and around the Alpine region. As in earlier studies, we observe a coherent rotation of fast axes in the western part of the Alpine chain, and a region of homogeneous fast orientation in the Central Alps. The spatial variation of splitting delay times is particularly interesting though. On one hand, there is a clear positive correlation with Alpine topography, suggesting that part of the seismic anisotropy (deformation) is caused by the Alpine orogeny. On the other hand, anisotropic strength around the mountain chain shows a distinct contrast between the Western and Eastern Alps. This difference is best explained by the more active mantle flow around the Western Alps. The new observational constraints, especially the splitting delay, provide new information on Alpine geodynamics.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-16
    Description: Reliable automatic procedure for locating earthquake in quasi-real time is strongly needed for seismic warning system, earthquake preparedness, and producing shaking maps. The reliability of an automatic location algorithm is influenced by several factors such as errors in picking seismic phases, network geometry, and velocity model uncertainties. The main purpose of this work is to investigate the performances of different automatic procedures to choose the most suitable one to be applied for the quasi-real-time earthquake locations in northwestern Italy. The reliability of two automatic-picking algorithms (one based on the Characteristic Function (CF) analysis, CF picker, and the other one based on the Akaike Information Criterion (AIC), AIC picker) and two location methods (“Hypoellipse” and “NonLinLoc” codes) is analysed by comparing the automatically determined hypocentral coordinates with reference ones. Reference locations are computed by the “Hypoellipse” code considering manually revised data and tested using quarry blasts. The comparison is made on a dataset composed by 575 seismic events for the period 2000–2007 as recorded by the Regional Seismic network of Northwestern Italy. For P phases, similar results, in terms of both amount of detected picks and magnitude of travel time differences with respect to manual picks, are obtained applying the AIC and the CF picker; on the contrary, for S phases, the AIC picker seems to provide a significant greater number of readings than the CF picker. Furthermore, the “NonLin- Loc” software (applied to a 3D velocity model) is proved to be more reliable than the “Hypoellipse” code (applied to layered 1D velocity models), leading to more reliable automatic locations also when outliers (wrong picks) are present.
    Description: Published
    Description: 393–411
    Description: 8T. Sismologia in tempo reale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-24
    Description: The 2016–17 central Italy earthquake sequence began with the first mainshock near the town of Amatrice on August 24 (MW 6.0), and was followed by two subsequent large events near Visso on October 26 (MW 5.9) and Norcia on October 30 (MW 6.5), plus a cluster of 4 events with MW 〉 5.0 within few hours on January 18, 2017. The affected area had been monitored before the sequence started by the permanent Italian National Seismic Network (RSNC), and was enhanced during the sequence by temporary stations deployed by the National Institute of Geophysics and Volcanology and the British Geological Survey. By the middle of September, there was a dense network of 155 stations, with a mean separation in the epicentral area of 6–10 km, comparable to the most likely earthquake depth range in the region. This network configuration was kept stable for an entire year, producing 2.5 TB of continuous waveform recordings. Here we describe how this data was used to develop a large and comprehensive earthquake catalogue using the Complete Automatic Seismic Processor (CASP) procedure. This procedure detected more than 450,000 events in the year following the first mainshock, and determined their phase arrival times through an advanced picker engine (RSNI-Picker2), producing a set of about 7 million P- and 10 million S-wave arrival times. These were then used to locate the events using a non-linear location (NLL) algorithm, a 1D velocity model calibrated for the area, and station corrections and then to compute their local magnitudes (ML). The procedure was validated by comparison of the derived data for phase picks and earthquake parameters with a handpicked reference catalogue (hereinafter referred to as ‘RefCat’). The automated procedure takes less than 12 hours on an Intel Core-i7 workstation to analyse the primary waveform data and to detect and locate 3000 events on the most seismically active day of the sequence. This proves the concept that the CASP algorithm can provide effectively real-time data for input into daily operational earthquake forecasts, The results show that there have been significant improvements compared to RefCat obtained in the same period using manual phase picks. The number of detected and located events is higher (from 84,401 to 450,000), the magnitude of completeness is lower (from ML 1.4 to 0.6), and also the number of phase picks is greater with an average number of 72 picked arrival for a ML = 1.4 compared with 30 phases for RefCat using manual phase picking. These propagate into formal uncertainties of ± 0.9km in epicentral location and ± 1.5km in depth for the enhanced catalogue for the vast majority of the events. Together, these provide a significant improvement in the resolution of fine structures such as local planar structures and clusters, in particular the identification of shallow events occurring in parts of the crust previously thought to be inactive. The lower completeness magnitude provides a rich data set for development and testing of analysis techniques of seismic sequences evolution, including real-time, operational monitoring of b-value, time-dependent hazard evaluation and aftershock forecasting.
    Description: Published
    Description: 555–571
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-07
    Description: This work focuses on site response analyses in the Amatrice area (Central Italy), taking advantage of the 3A temporary seismic network, installed after the first shock (MW 6.0) of the 2016–2017 seismic sequence, and of a detailed site characterization. Classical empirical methods are applied on seismic signals to evaluate their capabilities to infer site response parameters. For about one-third of the stations, the H/V method fails in estimating the empirical SSR amplification function, as a consequence of the vertical amplification. Although the majority of sites belong to the EC8-B soil category, all the empirical methods show great variability in the site responses. For this reason, to find common features among the sites we perform a cluster analysis on SSR functions finding 5 clusters characterized by three site parameters: VS,30, f0 and Af0 (i.e microtremor H/V amplitude at f0). This result seems promising for site response estimation in Central Italy from velocity profiles and noise measurements.
    Description: Published
    Description: 106565
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...