ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-01
    Description: Deep convection and the related occurrence of hail, intense precipitation, and wind gusts represent a hazard to a range of energy infrastructure including wind turbine blades. Wind turbine blade leading-edge erosion (LEE) is caused by the impact of falling hydrometeors onto rotating wind turbine blades. It is a major source of wind turbine maintenance costs and energy losses from wind farms. In the U.S. southern Great Plains (SGP), where there is widespread wind energy development, deep convection and hail events are common, increasing the potential for precipitation-driven LEE. A 25-day Weather Research and Forecasting (WRF) Model simulation conducted at convection-permitting resolution and using a detailed microphysics scheme is carried out for the SGP to evaluate the effectiveness in modeling the wind and precipitation conditions relevant to LEE potential. WRF output for these properties is evaluated using radar observations of precipitation (including hail) and reflectivity, in situ wind speed measurements, and wind power generation. This research demonstrates some skill for the primary drivers of LEE. Wind speeds, rainfall rates, and precipitation totals show good agreement with observations. The occurrence of precipitation during power-producing wind speeds is also shown to exhibit fidelity. Hail events frequently occur during periods when wind turbines are rotating and are especially important to LEE in the SGP. The presence of hail is modeled with a mean proportion correct of 0.77 and an odds ratio of 4.55. Further research is needed to demonstrate sufficient model performance to be actionable for the wind energy industry, and there is evidence for positive model bias in cloud reflectivity.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-29
    Description: In this two-part paper, influences from environmental factors on lightning in a convective storm are assessed with a model. In Part I, an electrical component is described and applied in the Aerosol-Cloud model (AC). AC treats many types of secondary (e.g. breakup in ice-ice collisions, raindrop-freezing fragmentation, rime-splintering) and primary (heterogeneous, homogeneous freezing) ice initiation. AC represents lightning flashes with a statistical treatment of branching from a fractal law constrained by video imagery. The storm simulated is from the Severe Thunderstorm Electrification and Precipitation Study (STEPS, 19/20 June 2000). The simulation was validated microphysically (e.g., ice/droplet concentrations and mean sizes, liquid water content [LWC], reflectivity, surface precipitation) and dynamically (e.g., ascent) in our 2017 paper. Predicted ice concentrations (~10 L-1) agreed—to within a factor of about two—with aircraft data at flight levels (−10 to −15 °C). Here, electrical statistics of the same simulation are compared with observations. Flash rates (to within a factor of two), triggering altitudes and polarity of flashes, and electric fields, agree with STEPS observations. The ‘normal’ tripole of charge structure observed during an electrical balloon sounding is reproduced by AC. It is related to reversal of polarity of non-inductive charging in ice-ice collisions seen in lab experiments when temperature or LWC are varied. Positively charged graupel and negatively charged snow at most mid-levels, charged away from the fastest updrafts, is predicted to cause the normal tripole. Total charge separated in the simulated storm is dominated by collisions involving secondary ice from fragmentation in graupel-snow collisions.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-19
    Description: A key component of the 4D-Var data assimilation method used widely for numerical weather prediction is the linear forecast model, which is approximately tangent-linear to the forecast model. Traditionally this has been based on differentiating the forecast model, though recently some authors have experimented with an ensemble regression technique, the ‘localised ensemble tangent linear model’ (LETLM). We propose a hybrid of the two, in which a simplified conventional tangent-linear model (for example, just the dynamical core) is used together with an LETLM-like adjustment every time step to account for the remaining processes (in this example, the parameterised physics). This is much cheaper than the LETLM, and in tests using the Met Office’s linear model performs considerably better than either a pure LETLM (with a very large ensemble) or the existing linear model.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-01
    Description: The Weather Research and Forecasting (WRF) Model has been extensively used for wind energy applications, and current releases include a scheme that can be applied to examine the effects of wind turbine arrays on the atmospheric flow and electricity generation from wind turbines. Herein we present a high-resolution simulation using two different wind farm parameterizations: 1) the “Fitch” parameterization that is included in WRF releases and 2) the recently developed Explicit Wake Parameterization (EWP) scheme. We compare the schemes using a single yearlong simulation for a domain centered on the highest density of current turbine deployments in the contiguous United States (Iowa). Pairwise analyses are applied to diagnose the downstream wake effects and impact of wind turbine arrays on near-surface climate conditions. On average, use of the EWP scheme results in small-magnitude wake effects within wind farm arrays and faster recovery of full WT array wakes. This in turn leads to smaller impacts on near-surface climate variables and reduced array–array interactions, which at a systemwide scale lead to summertime capacity factors (i.e., the electrical power produced relative to nameplate installed capacity) that are 2%–3% higher than those from the more commonly applied Fitch parameterization. It is currently not possible to make recommendations with regard to which wind farm parameterization exhibits higher fidelity or to draw inferences with regard to whether the relative performance may vary with prevailing climate conditions and/or wind turbine deployment configuration. However, the sensitivities documented herein to the wind farm parameterization are of sufficient magnitude to potentially influence wind turbine array siting decisions. Thus, our research findings imply high value in undertaking combined long-term high-fidelity observational studies in support of model validation and verification.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-12-01
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-05-11
    Description: The importance of using a general circulation model that includes a well-resolved stratosphere for climate simulations, and particularly the influence this has on surface climate, is investigated. High top model simulations are run with the Met Office Unified Model for the Coupled Model Intercomparison Project Phase 5 (CMIP5). These simulations are compared to equivalent simulations run using a low top model differing only in vertical extent and vertical resolution above 15 km. The period 1960–2002 is analyzed and compared to observations and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset. Long-term climatology, variability, and trends in surface temperature and sea ice, along with the variability of the annular mode index, are found to be insensitive to the addition of a well-resolved stratosphere. The inclusion of a well-resolved stratosphere, however, does improve the impact of atmospheric teleconnections on surface climate, in particular the response to El Niño–Southern Oscillation, the quasi-biennial oscillation, and midwinter stratospheric sudden warmings (i.e., zonal mean wind reversals in the middle stratosphere). Thus, including a well-represented stratosphere could improve climate simulation on intraseasonal to interannual time scales.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2010-11-01
    Description: Cloud simulations and cloud–climate feedbacks in the tropical and subtropical eastern Pacific region in 16 state-of-the-art coupled global climate models (GCMs) and in the International Pacific Research Center (IPRC) Regional Atmospheric Model (iRAM) are examined. The authors find that the simulation of the present-day mean cloud climatology for this region in the GCMs is very poor and that the cloud–climate feedbacks vary widely among the GCMs. By contrast, iRAM simulates mean clouds and interannual cloud variations that are quite similar to those observed in this region. The model also simulates well the observed relationship between lower-tropospheric stability (LTS) and low-level cloud amount. To investigate cloud–climate feedbacks in iRAM, several global warming scenarios were run with boundary conditions appropriate for late twenty-first-century conditions. All the global warming cases simulated with iRAM show a distinct reduction in low-level cloud amount, particularly in the stratocumulus regime, resulting in positive local feedback parameters in these regions in the range of 4–7 W m−2 K−1. Domain-averaged (30°S–30°N, 150°–60°W) feedback parameters from iRAM range between +1.8 and +1.9 W m−2 K−1. At most locations both the LTS and cloud amount are altered in the global warming cases, but the changes in these variables do not follow the empirical relationship found in the present-day experiments. The cloud–climate feedback averaged over the same east Pacific region was also calculated from the Special Report on Emissions Scenarios (SRES) A1B simulations for each of the 16 GCMs with results that varied from −1.0 to +1.3 W m−2 K−1, all less than the values obtained in the comparable iRAM simulations. The iRAM results by themselves cannot be connected definitively to global climate feedbacks; however, among the global GCMs the cloud feedback in the full tropical–subtropical zone is correlated strongly with the east Pacific cloud feedback, and the cloud feedback largely determines the global climate sensitivity. The present iRAM results for cloud feedbacks in the east Pacific provide some support for the high end of current estimates of global climate sensitivity.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-06-01
    Description: The formation of pre–Hurricane Felix (2007) in a tropical easterly wave is examined in a two-part study using the Weather Research and Forecasting (WRF) model with a high-resolution nested grid configuration that permits the representation of cloud system processes. The simulation commences during the wave stage of the precursor African easterly-wave disturbance. Here the simulated and observed developments are compared, while in Part II of the study various large-scale analyses, physical parameterizations, and initialization times are explored to document model sensitivities. In this first part the authors focus on the wave/vortex morphology, its interaction with the adjacent intertropical convergence zone complex, and the vorticity balance in the neighborhood of the developing storm. Analysis of the model simulation points to a bottom-up development process within the wave critical layer and supports the three new hypotheses of tropical cyclone formation proposed recently by Dunkerton, Montgomery, and Wang. It is shown also that low-level convergence associated with the ITCZ helps to enhance the wave signal and extend the “wave pouch” from the jet level to the top of the atmospheric boundary layer. The region of a quasi-closed Lagrangian circulation within the wave pouch provides a focal point for diabatic merger of convective vortices and their vortical remnants. The wave pouch serves also to protect the moist air inside from dry air intrusion, providing a favorable environment for sustained deep convection. Consistent with the authors’ earlier findings, the tropical storm forms near the center of the wave pouch via system-scale convergence in the lower troposphere and vorticity aggregation. Components of the vorticity balance are shown to be scale dependent, with the immediate effects of cloud processes confined more closely to the storm center than the overturning Eliassen circulation induced by diabatic heating, the influence of which extends to larger radii.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-05-01
    Description: The climatology of a stratosphere-resolving version of the Met Office’s climate model is studied and validated against ECMWF reanalysis data. Ensemble integrations are carried out at two different horizontal resolutions. Along with a realistic climatology and annual cycle in zonal mean zonal wind and temperature, several physical effects are noted in the model. The time of final warming of the winter polar vortex is found to descend monotonically in the Southern Hemisphere, as would be expected for purely radiative forcing. In the Northern Hemisphere, however, the time of final warming is driven largely by dynamical effects in the lower stratosphere and radiative effects in the upper stratosphere, leading to the earliest transition to westward winds being seen in the midstratosphere. A realistic annual cycle in stratospheric water vapor concentrations—the tropical “tape recorder”—is captured. Tropical variability in the zonal mean zonal wind is found to be in better agreement with the reanalysis for the model run at higher horizontal resolution because the simulated quasi-biennial oscillation has a more realistic amplitude. Unexpectedly, variability in the extratropics becomes less realistic under increased resolution because of reduced resolved wave drag and increased orographic gravity wave drag. Overall, the differences in climatology between the simulations at high and moderate horizontal resolution are found to be small.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...