ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (10)
  • 2020-2022  (10)
  • 1
    Publication Date: 2021-01-19
    Description: We report the first observation of plasma density oscillations coherent with magnetic Pc1 waves. Swarm satellites observed compressional Pc1 wave activity in the 0.5–3 Hz band, which was coherent with in situ plasma density oscillations. Around the Pc1 event location, the Antarctic Neumayer Station III (L ~ 4.2) recorded similar Pc1 events in the horizontal component while NOAA‐15 observed isolated proton precipitations at energies above 30 keV. All these observations support that the compressional Pc1 waves at Swarm are oscillations converted from electromagnetic ion cyclotron (EMIC) waves coming from the magnetosphere. The magnetic field and plasma density oscillate in‐phase. We compared the amplitudes of density and magnetic field oscillations normalized to background values and found that the density power is much larger than the magnetic field power. This difference cannot be explained by a simple magnetohydrodynamic (MHD) model, although steep horizontal/vertical gradients of background ionospheric density can partly reconcile the discrepancy.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-08
    Description: The ultrafast synthesis of ε-Fe3N1+x in a diamond-anvil cell (DAC) from Fe and N2 under pressure was observed using serial exposures of an X-ray free electron laser (XFEL). When the sample at 5 GPa was irradiated by a pulse train separated by 443 ns, the estimated sample temperature at the delay time was above 1400 K, confirmed by in situ transformation of α- to γ-iron. Ultimately, the Fe and N2 reacted uniformly throughout the beam path to form Fe3N1.33, as deduced from its established equation of state (EOS). We thus demonstrate that the activation energy provided by intense X-ray exposures in an XFEL can be coupled with the source time structure to enable exploration of the time-dependence of reactions under high-pressure conditions.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-15
    Description: We report on observations of electromagnetic ion cyclotron (EMIC) waves and their interactions with injected ring current particles and high energy radiation belt electrons. The magnetic field experiment aboard the twin Van Allen Probes spacecraft measured EMIC waves near L = 5.5 − 6. Particle data from the spacecraft show that the waves were associated with particle injections. The wave activity was also observed by a ground‐based magnetometer near the spacecraft geomagnetic footprint over a more extensive temporal range. Phase space density (PSD) profiles, calculated from directional differential electron flux data from Van Allen Probes, show that there was a significant energy‐dependent relativistic electron dropout over a limited L‐shell range during and after the EMIC wave activity. In addition, the NOAA spacecraft observed relativistic electron precipitation associated with the EMIC waves near the footprint of the Van Allen Probes spacecraft. The observations suggest EMIC wave‐induced relativistic electron loss in the radiation belt.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-06
    Description: Ground data on spectral characteristics of Jordan's soils remain sparse, which makes the interpretation of remote sensing datasets challenging. These are, however, very useful for predicting soil properties and agricultural suitability. Previous studies have shown that soil colours correlate well with degrees of weathering intensity, as indicated by magnetic parameters and dithionite-extractable iron (Fed) contents along a climosequence in northern Jordan. This study enlarges the database by the results of 160 bulk samples that were collected systematically from the soil surface at 40 locations. In addition to soil colour and contents of Fed, we explore mean soil reflectance spectra (MSRS) measured by analytical spectral devices (ASD) and analyse the morphological conditions of the spectra referring to the effects of iron oxides on spectral behaviours. Results show a high correlation of spectral behaviours and colour variations with Fe oxides, and no correlation with soil organic carbon Corg. The influence of the Fe oxide contents is clearly apparent in the visible range (VIS). The presence of CaCO3 increases the reflectance in all spectral ranges. Six soil groups (Gr. I - Gr. VI) were discerned qualitatively and quantitatively in the study area, which largely mirror the intensity of red colour expressed by redness indices. Highlights In northwestern Jordan there is an evident connection between the spectral properties, chemistry and soil colour. This study established a preliminary spectral library of soils in NW Jordan to facilitate the use of remote sensing in soil studies. The morphological properties and statistical analysis of the spectral data show that spectra of soils in NW Jordan are dominated by iron oxides. Spectral properties can be used to characterize the soil colours and types of Fe oxides in soils of Jordan.
    Keywords: 631.4 ; ASD laboratory soil spectroscopy ; CIELAB colour system ; iron oxides ; Mediterranean soils ; soil colour
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-26
    Description: A one-pot synthesis and application of cellulose-based sensors to efficiently detect various toxic metal ions in aqueous solutions in micromolar quantities is reported. Cellulose microfibers have been functionalized with carbon disulfide in alkaline solution to form cellulose xanthate. The material detects several toxic metal ions such as copper, nickel, or cobalt ions through color change detectable by the naked eye. The optical sensor can be used as an ideal flash test for assessing the quality of drinking water.
    Keywords: 363.7363 ; cellulose ; cellulose xanthate ; colorimetric sensors ; metal ion detection ; viscose processes
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-03
    Description: In this study, a series of hydraulic fracturing tests under different injecting conditions was performed on Pocheon granite rock to account for the evolution of hydro-mechanical behavior during the fracturing process. We investigated the effect of the fluid viscosity and pressurization rate on the fracturing process of granite. Two different type of injection fluids, water and oil, were used under different pressurization rate. Visual inspection techniques such as X-ray computed tomography and thin section imaging were employed to capture the fracture pattern together with AE monitoring. As a result, the water injection case has larger saturation zone into the formation at breakdown while the oil infiltrates only vicinity of main fracture. The AE monitoring results show that the oil injection cases have a big sudden rise in the cumulative AE hit energy during fracture propagation which is more manifest under high pressurization rate. The induced fractures are observed to be larger in aperture and less tortuous for the higher fluid viscosity and higher pressurization rate cases through thin section images. On the other hand, the sleeve testing cases yield relatively very small aperture of induced fractures.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-10
    Description: The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump-probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-14
    Description: In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-20
    Description: Water-rich planets exist in our Solar System (Uranus and Neptune) and are found to be common in the extrasolar systems (some of the sub-Neptunes). In conventional models of these planets a thick water-rich layer is underlain by a separate rocky interior. Here we report experimental results on two rock-forming minerals, olivine ((Mg,Fe)2SiO4) and ferropericlase ((Mg,Fe)O), in water at the pressure and temperature conditions expected for the water-rich planets. Our data indicate a selective leaching of MgO, which peaks between 20 and 40 GPa and above 1,500 K. For water-rich planets with 1–6 Earth masses (〉50 wt% H2O), the chemical reaction at the deep water–rock interface would lead to high concentrations of MgO in the H2O layer. For Uranus and Neptune, the top ~3% of the H2O layer would have a large storage capacity for MgO. If an early dynamic process enables the rock–H2O reaction, the topmost H2O layer may be rich in MgO, possibly affecting the thermal history of the planet.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-25
    Description: Transverse Pc1 waves propagating from magnetospheric source regions undergo mode conversion to the compressional mode in the ionosphere due to the induced Hall current. Mode converted Pc1 waves propagate across the magnetic field through the ionospheric waveguide. This process is called Pc1 wave ducting (PWD). PWDs have been observed by magnetometers on both ground and low Earth orbit satellites over a wide latitudinal and longitudinal range. In this work, we present the statistical analysis results of PWD exploiting Swarm satellites from 2015 to 2019. Spatial distributions show that the PWDs are mainly observed over the South Atlantic Anomaly longitudes, possibly due to the high Hall conductivity and F-region density, and at subauroral/auroral latitudes (  50 70 MLAT). The occurrence rate of PWD increases with increasing AE and | SYM-H | indices. Seasonal dependence shows that PWD exhibits a high occurrence rate during equinox and local summer while local winter hosts only a low occurrence. The asymmetry between summer and winter can be explained by the ionospheric plasma density. The high occurrence rate in equinox may result from intense geomagnetic activity during the equinox, probably due to the Russell-McPherron effect. From our statistical analysis, we conclude that the occurrence of PWD is controlled by both ionospheric plasma conditions and geomagnetic activity, and that the mode conversion and PWD occur more efficiently as plasma density increases.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...