ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: From 1875 to 1878, concurrent multiyear droughts in Asia, Brazil, and Africa, referred to as the Great Drought, caused widespread crop failures, catalyzing the so-called Global Famine, which had fatalities exceeding 50 million people and long-lasting societal consequences. Observations, paleoclimate reconstructions, and climate model simulations are used 1) to demonstrate the severity and characterize the evolution of drought across different regions, and 2) to investigate the underlying mechanisms driving its multiyear persistence. Severe or record-setting droughts occurred on continents in both hemispheres and in multiple seasons, with the "Monsoon Asia" region being the hardest hit, experiencing the single most intense and the second most expansive drought in the last 800 years. The extreme severity, duration, and extent of this global event is associated with an extraordinary combination of preceding cool tropical Pacific conditions (1870-76), a record-breaking El Nino (1877-78), a record strong Indian Ocean dipole (1877), and record warm North Atlantic Ocean (1878) conditions. Composites of historical analogs and two sets of ensemble simulations - one forced with global sea surface temperatures (SSTs) and another forced with tropical Pacific SST - were used to distinguish the role of the extreme conditions in different ocean basins. While the drought in most regions was largely driven by the tropical Pacific SST conditions, an extreme positive phase of the Indian Ocean dipole and warm North Atlantic SSTs, both likely aided by the strong El Nino in 1877-78, intensified and prolonged droughts in Australia and Brazil, respectively, and extended the impact to northern and southeastern Africa. Climatic conditions that caused the Great Drought and Global Famine arose from natural variability, and their recurrence, with hydrological impacts intensified by global warming, could again potentially undermine global food security.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN62938 , Journal of Climate (ISSN 0894-8755) (e-ISSN 1520-0442); 31; 23; 9445–9467
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Nino-Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Nino events lead to cooling in this region, strong El Nino events lead to warming, even as the response of the large-scale Brewer Dobson circulation appears to scale nearly linearly with El Nino. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Nino: strong El Nino events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Nina and strong El Nino events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Nino event in 1997/1998, followed by more than 2 consecutive years of La Nina, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN55175 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 7; 4597-4615
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...