ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019
  • 2010-2014  (4)
  • 2013  (4)
Collection
Publisher
Years
  • 2015-2019
  • 2010-2014  (4)
Year
  • 1
  • 2
    Publication Date: 2013-05-15
    Description: Subduction of the oceanic Cocos plate offshore Costa Rica causes strong advection of methane-charged fluids. Presented here are the first direct measurements of microbial anaerobic oxidation of methane (AOM) and sulfate reduction (SR) rates in sediments from the two mounds, applying radiotracer techniques in combination with numerical modeling. In addition, analysis of carbonate δ18O, δ13C, and 87Sr / 86Sr signatures constrain the origin of the carbonate-precipitating fluid. Average rates of microbial activities showed differences with a factor of 4.8 to 6.3 between Mound 11 [AOM 140.71 (±40.84 SD); SR 117.25 (±82.06 SD) mmol m−2 d−1, respectively] and Mound 12 [AOM 22.37 (±0.85 SD); SR 23.99 (±5.79 SD) mmol m−2 d−1, respectively]. Modeling results yielded flow velocities of 50 cm a−1 at Mound 11 and 8–15 cm a−1 at Mound 12. Analysis of oxygen and carbon isotope variations of authigenic carbonates from the two locations revealed higher values for Mound 11 (δ18O: 4.7 to 5.9‰, δ13C: −21.0 to −29.6‰), compared to Mound 12 (δ18O: 4.1 to 4.5‰, δ13C: −45.7 to −48.9‰). Analysis of carbonates 87Sr / 86Sr indicated temporal changes of deep-source fluid admixture at Mound 12. The present study is in accordance with previous work supporting considerable differences of methane flux between the two Mounds. It also strengthens the hypothesis of a predominantly deep fluid source for Mound 11 versus a rather shallow source of biogenic methane for Mound 12. The results demonstrate that methane-driven microbial activity is a valid ground truthing tool for geophysical measurements of fluid advection and constraining of recent methane fluxes in the study area. The study further shows that the combination of microbial rate measurements, numerical modeling, and authigenic carbonate analysis provide a suitable approach to constrain temporal and spatial variations of methane charged fluid flow at the Pacific Costa Rican margin.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-11
    Description: The accumulation of gas hydrates in marine sediments is essentially controlled by the accumulation of particulate organic carbon (POC) which is microbially converted into methane, the thickness of the gas hydrate stability zone (GHSZ) where methane can be trapped, the sedimentation rate (SR) that controls the time that POC and the generated methane stays within the GHSZ, and the delivery of methane from deep-seated sediments by ascending pore fluids and gas into the GHSZ. Recently, Wallmann et al. (2012) presented transfer functions to predict the gas hydrate inventory in diffusion-controlled geological systems based on SR, POC and GHSZ thickness for two different scenarios: normal and full compacting sediments. We apply these functions to global data sets of bathymetry, heat flow, seafloor temperature, POC input and SR, estimating a global mass of carbon stored in marine methane hydrates from 3 to 455 Gt of carbon (GtC) depending on the sedimentation and compaction conditions. The global sediment volume of the GHSZ in continental margins is estimated to be 60–67 × 1015 m3, with a total of 7 × 1015 m3 of pore volume (available for GH accumulation). However, seepage of methane-rich fluids is known to have a pronounced effect on gas hydrate accumulation. Therefore, we carried out a set of systematic model runs with the transport-reaction code in order to derive an extended transfer function explicitly considering upward fluid advection. Using averaged fluid velocities for active margins, which were derived from mass balance considerations, this extended transfer function predicts the enhanced gas hydrate accumulation along the continental margins worldwide. Different scenarios were investigated resulting in a global mass of sub-seafloor gas hydrates of ~ 550 GtC. Overall, our systematic approach allows to clearly and quantitatively distinguish between the effect of biogenic methane generation from POC and fluid advection on the accumulation of gas hydrate, and hence, provides a simple prognostic tool for the estimation of large-scale and global gas hydrate inventories in marine sediments.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-07-15
    Description: The discovery that foraminifera are able to use nitrate instead of oxygen as an electron acceptor for respiration has challenged our understanding of nitrogen cycling in the ocean. It was thought before that only prokaryotes and some fungi are able to denitrify. Rate estimates of foraminiferal denitrification have been very sparse and limited to specific regions in the oceans, not comparing stations along a transect of a certain region. Here, we present estimates of benthic foraminiferal denitrification rates from six stations at intermediate water depths in and below the Peruvian oxygen minimum zone (OMZ). Foraminiferal denitrification rates were calculated from abundance and assemblage composition of the total living fauna in both surface and subsurface sediments, as well as from individual species specific denitrification rates. A comparison with total benthic denitrification rates as inferred by biogeochemical models revealed that benthic foraminifera probably account for the total denitrification in shelf sediments between 80 and 250 m water depth. The estimations also imply that foraminifera are still important denitrifiers in the centre of the OMZ around 320 m (29–50% of the benthic denitrification), but play only a minor role at the lower OMZ boundary and below the OMZ between 465 and 700 m (2–6% of total benthic denitrification). Furthermore, foraminiferal denitrification has been compared to the total benthic nitrate loss measured during benthic chamber experiments. The estimated foraminiferal denitrification rates contribute 2 to 46% to the total nitrate loss across a depth transect from 80 to 700 m, respectively. Flux rate estimates range from 0.01 to 1.3 mmol m−2 d−1. Furthermore we show that the amount of nitrate stored in living benthic foraminifera (3 to 3955 μmol L−1) can be higher by three orders of magnitude as compared to the ambient pore waters in near-surface sediments sustaining an important nitrate reservoir in Peruvian OMZ sediments. The substantial contribution of foraminiferal nitrate respiration to total benthic nitrate loss at the Peruvian margin, which is one of the main nitrate sink regions in the world ocean, underpins the importance of the previously underestimated role of benthic foraminifera in global biogeochemical cycles.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...