ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-09-06
    Description: Hydroperoxy radical (HO2) concentrations were measured during the formal blind intercomparison campaign HOxComp carried out in Jülich, Germany. Three instruments detected HO2 via chemical conversion to hydroxyl radicals (OH) and subsequent detection of the sum of OH and HO2 by laser induced fluorescence (LIF). Instruments sampled ambient air for three days and were attached to the atmosphere simulation chamber SAPHIR during the second part of the campaign. Six experiments of one day each were conducted in SAPHIR, where air masses were homogeneously mixed, in order to investigate the performance of instruments and to determine potential interferences of measurements under well-controlled conditions. Linear correlation coefficients between measurements of the LIF instruments are generally high and range from 0.82 to 0.98. However, the agreement between measurements is variable. The regression analysis of the entire data set of measurements in SAPHIR yields slopes between 0.69 to 1.26 and intercepts are smaller than typical atmospheric daytime concentrations (less than 1 pptv). The quality of fit parameters improves significantly, when data are grouped into data subsets of similar water vapor concentrations. Because measurements of LIF instruments were corrected for a well-characterized water dependence of their sensitivities, this indicates that an unknown factor related to water vapor affected measurements in SAPHIR. Measurements in ambient air are also well correlated, but regression parameters differ from results obtained from SAPHIR experiments. This is most likely caused by sampling different air masses at the slightly distant locations of instruments.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-15
    Description: As a major source region of the hydroxyl radical OH, the Tropics largely control the oxidation capacity of the atmosphere on a global scale. However, emissions of hydrocarbons from the tropical rainforest that react rapidly with OH can potentially deplete the amount of OH and thereby reduce the oxidation capacity. The airborne GABRIEL field campaign in equatorial South America (Suriname) in October 2005 investigated the influence of the tropical rainforest on the HOx budget (HOx = OH + HO2). The first observations of OH and HO2 over a tropical rainforest are compared to steady state concentrations calculated with the atmospheric chemistry box model MECCA. The important precursors and sinks for HOx chemistry, measured during the campaign, are used as constraining parameters for the simulation of OH and HO2. Significant underestimations of HOx are found by the model over land during the afternoon, with mean ratios of observation to model of 12.2 ± 3.5 and 4.1 ± 1.4 for OH and HO2, respectively. The discrepancy between measurements and simulation results is correlated to the abundance of isoprene. While for low isoprene mixing ratios (above ocean or at altitudes 〉3 km), observation and simulation agree fairly well, for mixing ratios 〉200 pptV (
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-08-04
    Description: One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta, Sierra Madre Oriental, Coastal Plain, and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis of the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three transport pathways on 18–19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf of Mexico, and (c) low-level outflow with entrainment into a cleaner northwesterly jet above the Coastal Plain. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways; in all three cases, peaks in urban tracer concentrations and LIDAR backscatter are consistent with MCMA pollution. In comparison with the transport models used in the campaign, the balloon-based trajectories appear to shear the outflow far more uniformly and decouple it from the surface, thus forming a thin but expansive polluted layer over the Gulf of Mexico that is well aligned with the aircraft observations. These results provide critical context for the extensive aircraft measurements made during the 18–19 March MCMA outflow event and may have broader implications for modelling and understanding long-range transport.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-04-22
    Description: Direct measurements of OH and HO2 over a tropical rainforest were made for the first time during the GABRIEL campaign in October 2005, deploying the custom-built HORUS instrument (HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy), adapted to fly in a Learjet wingpod. Biogenic hydrocarbon emissions were expected to strongly reduce the OH and HO2 mixing ratios as the air is transported from the ocean over the forest. However, surprisingly high mixing ratios of both OH and HO2 were encountered in the boundary layer over the rainforest. The HORUS instrumentation and calibration methods are described in detail and the measurement results obtained are discussed. The extensive dataset collected during GABRIEL, including measurements of many other trace gases and photolysis frequencies, has been used to quantify the main sources and sinks of OH. Comparison of these measurement-derived formation and loss rates of OH indicates strong previously overlooked recycling of OH in the boundary layer over the tropical rainforest, occurring in chorus with isoprene emission.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-12-23
    Description: Hydroperoxy radical (HO2) concentrations were measured during the formal blind intercomparison campaign HOxComp carried out in Jülich, Germany, in 2005. Three instruments detected HO2 via chemical conversion to hydroxyl radicals (OH) and subsequent detection of the sum of OH and HO2 by laser induced fluorescence (LIF). All instruments were based on the same detection and calibration scheme. Because measurements by a MIESR instrument failed during the campaign, no absolute reference measurement was available, so that the accuracy of individual instruments could not be addressed. Instruments sampled ambient air for three days and were attached to the atmosphere simulation chamber SAPHIR during the second part of the campaign. Six experiments of one day each were conducted in SAPHIR, where air masses are homogeneously mixed, in order to investigate the performance of instruments and to determine potential interferences of measurements under well-controlled conditions. Linear correlation coefficients (R2) between measurements of the LIF instruments are generally high and range from 0.82 to 0.98. However, the agreement between measurements is variable. The regression analysis of the entire data set of measurements in SAPHIR yields slopes between 0.69 to 1.26 and intercepts are smaller than typical atmospheric daytime concentrations (less than 1 pptv). The quality of fit parameters improves significantly, when data are grouped into data subsets of similar water vapor concentrations. Because measurements of LIF instruments were corrected for a well-characterized water dependence of their sensitivities, this indicates that an unknown factor related to water vapor affected measurements in SAPHIR. Measurements in ambient air are also well-correlated, but regression parameters differ from results obtained from SAPHIR experiments. This could have been caused by differences in HO2 concentrations in the sampled air at the slightly different locations of instruments.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-02-19
    Description: The absolute rate coefficients for the tropospheric reactions of chlorine (Cl) atoms and hydroxyl (OH) radicals with CF3CH2CHO and CF3(CH2)2CHO were measured as a function of temperature (263–371 K) and pressure (50–215 Torr of He) by pulsed UV laser photolysis techniques. Vacuum UV resonance fluorescence was employed to detect and monitor the time evolution of Cl atoms. Laser induced fluorescence was used in this work for the detection of OH radicals as a function of reaction time. No pressure dependence of the bimolecular rate coefficients, kCl and kOH, was found at all temperatures. At room temperature kCl and kOH were (in 10−11 cm3 molecule−1 s−1): kCl(CF3CH2CHO) = (1.55±0.53); kCl(CF3(CH2)2CHO) = (3.39±1.38); kCl(CF3CH2CHO) = (0.259±0.050); kCl(CF3(CH2)2CHO) = (1.28±0.24). A slightly positive temperature dependence of kCl was observed for CF3CH2CHO and CF3(CH2)2CHO, and kOH(CF3CH2CHO). In contrast, kOH(CF3(CH2)2CHO) did not exhibit a temperature dependence over the range investigated. Arrhenius expressions for these reactions were: kCl(CF3CH2CHO) = (4.4±1.0)×10−11 exp{−(316±68)/T} cm3 molecule−1 s−1 kCl(CF3(CH2)2CHO) = (2.9±0.7)×10−10 exp{−(625±80)/T} cm3 molecule−1 s−1 kOH(CF3CH2CHO) = (7.8±2.2)×10−12 exp{−(314±90)/T} cm3 molecule−1 s−1 The atmospheric impact of the homogeneous removal by OH radicals and Cl atoms of these fluorinated aldehydes is discussed in terms of the global atmospheric lifetimes, taking into account different degradation pathways. The calculated lifetimes show that atmospheric oxidation of CF3(CH2)x CHO are globally dominated by OH radicals, however reactions initiated by Cl atoms can act as a source of free radicals at dawn in the troposphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-02-09
    Description: One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis based on the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three different transport pathways on 18–19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf, and (c) low-altitude outflow with entrainment into a cleaner westerly jet below the plateau. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways. In all three cases, distinct peaks in the urban tracer signatures and LIDAR backscatter imagery were consistent with MCMA pollution. The coherence of the high-altitude outflow was well preserved after one day whereas that lower in the atmosphere was more widely dispersed over the same time period. Other C-130 intercepts of polluted air are shown to have likely originated outside of MCMA. These findings, and the aircraft intercepts in particular, should prove useful in answering a range of scientific questions pertaining to the transport, transformation, and downwind impacts of megacity air pollution.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-04-07
    Description: The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th Century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 27 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st Century. However, for most of these habitats, the global area covered is unknown or has been only very roughly estimated; an even smaller – indeed, minimal – proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation, thus, shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps, where chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of deep-sea communities, which are adapted to low energy availability. In most of the heterotrophic deep-sea settings, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs) and chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000–3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust datasets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult but is essential if we are to analyse large diversity and biogeographic trends. Because of their remoteness, anthropogenic impacts on deep-sea ecosystems have not been addressed very thoroughly until recently. The depletion of biological and mineral resources on land and in shallow waters, coupled with technological developments, is promoting the increased interest in services provided by deep-water resources. Although often largely unknown, evidence for the effects of human activities in deep-water ecosystems – such as deep-sea mining, hydrocarbon exploration and exploitation, fishing, dumping and littering – is already accumulating. Because of our limited knowledge of deep-sea biodiversity and ecosystem functioning and because of the specific life-history adaptations of many deep-sea species (e.g. slow growth and delayed maturity), it is essential that the scientific community works closely with industry, conservation organisations and policy makers to develop conservation and management options.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-12-30
    Description: Primary succession is an ecological process of fundamental importance referring to the development of vegetation on areas not previously occupied by a plant community. The bulk of knowledge on primary succession comes from areas affected by relatively recent volcanic eruptions, and highlights the importance of symbiosis between host plants and fungi for the initial stages of succession. Arbuscular mycorrhizas (AM) are of particular interest as they are often present from the very beginning of primary succession and because they show different relationships with pioneer and late-successional species, which suggests they may be involved in important, yet unknown, ecological mechanisms of succession. We review existing knowledge based on case studies from the volcanic desert of Mount Fuji, Japan, where primary succession was examined intensively and which represents one of the best-known cases on the role of AM in primary succession. We also assess the potential of sand dunes and semi-arid, erosion-prone systems for addressing the role of mycorrhizas in primary succession. Analyzing primary succession under different ecological systems is critical to understand the role of AM in this basic process. While volcanoes and glaciers are restricted to particular mountainous areas, naturally eroded areas and sand dunes are more common and easily accessible, making them attractive models to study primary succession.
    Print ISSN: 2193-3081
    Electronic ISSN: 1399-1183
    Topics: Biology
    Published by Copernicus on behalf of European Ecological Federation.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-09-30
    Description: The complex spatial and temporal characteristics of European dry spell lengths, DSL, (sequences of consecutive days with rainfall amount below a certain threshold) and their randomness and predictive instability are analysed from daily pluviometric series recorded at 267 rain gauges along the second half of the 20th century. DSL are obtained by considering four thresholds, R0, of 0.1, 1.0, 5.0 and 10.0 mm/day. A proper quantification of the complexity, randomness and predictive instability of the different DSL regimes in Europe is achieved on the basis of fractal analyses and dynamic system theory, including the reconstruction theorem. First, the concept of lacunarity is applied to the series of daily rainfall, and the lacunarity curves are well fitted to Cantor and random Cantor sets. Second, the rescaled analysis reveals that randomness, persistence and anti-persistence are present on the European DSL series. Third, the complexity of the physical process governing the DSL series is quantified by the minimum number of nonlinear equations determined by the correlation dimension. And fourth, the loss of memory of the physical process, which is one of the reasons for the complex predictability, is characterized by the values of the Kolmogorov entropy, and the predictive instability is directly associated with positive Lyapunov exponents. In this way, new bases for a better prediction of DSLs in Europe, sometimes leading to drought episodes, are established. Concretely, three predictive strategies are proposed in Sect. 5. It is worth mentioning that the spatial distribution of all fractal parameters does not solely depend on latitude and longitude but also reflects the effects of orography, continental climate or vicinity to the Atlantic and Arctic Oceans and Mediterranean Sea.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...