ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-04-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-26
    Description: This paper presents a velocity model of the Italian (central Mediterranean) lithosphere in unprecedented detail. The model is derived by inverting a set of 166,000 Pg and Pn seismic wave arrival times, restricted to the highest-quality data available. The tomographic images reveal the geometry of the subduction-collision system between the European, Adriatic, and Tyrrhenian plates, over a larger volume and with finer resolution than previous studies. We find two arcs of low-Vp anomalies running along the Alps and the Apennines, describing the collision zones of underthrusting continental lithospheres. Our results suggest that in the Apennines, a significant portion of the crust has been subducted below the mountain belt. From the velocity model we can also infer thermal softening of the crustal wedge above the subducting Adriatic plate. In the Tyrrhenian back-arc region, strong and extensive low-Vp anomalies depict upwelling asthenospheric material. The tomographic images also allow us to trace the boundary between the Adriatic and the Tyrrhenian plates at Moho depth, revealing some tears in the Adriatic-Ionian subducting lithosphere. The complex lithospheric structure described by this study is the result of a long evolution; the heterogeneities of continental margins, lithospheric underthrusting, and plate indentation have led to subduction variations, slab tears, and asthenospheric upwelling at the present day. The high-resolution model provided here greatly improves our understanding of the central Mediterranean’s structural puzzle. The results of this study can also shed light on the evolution of other regions experiencing both oceanic and continental subduction.
    Description: Published
    Description: B05305
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: lithosphere ; crust ; italy ; plates ; subduction ; europe ; seismicity ; adria ; tyrrhenian ; boundary ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-05-27
    Description: Convective flow in the mantle can be thought of (and modeled) as exclusively driven by density hetero- geneities in the mantle itself, and the resulting lateral variations in the Earth’s gravity field. With this assumption, and a model of mantle rheology, a theoretical relationship can be found between 3D mantle structure and flow-related quantities that can be measured on the Earth’s surface, like free-air gravity anomalies. This relationship can be used to set up an inverse problem, with 1D mantle viscosity as a solu- tion. In the assumption that seismic velocity anomalies be of purely thermal origin, and related to density anomalies by a simple scaling factor, we invert the large-scale length component of the above-mentioned measurements jointly with seismic observations (waveforms and/or travel times) to derive an accurate 5-layer spherically symmetric model of upper- and lower-mantle viscosity. We attempt to account for non-uniqueness in the inverse problem by exploring the solution space, formed of all possible radial pro- files of Earth viscosity, by means of a non-deterministic global optimization method: the evolutionary algorithm (EA). For each sampled point of the solution space, a forward calculation is conducted to deter- mine a map of gravity anomalies, whose similarity to GRACE (gravity recovery and climate experiment) is then measured; the procedure is iterated to convergence, according to EA criteria. The robustness of the inversion is tested by means of synthetic tests, indicating that our gravity data set is able to constrain less than 6 radial layers, each with uniform viscosity. Independently of the tomographic model or the scaling factor adopted to convert seismic velocity into density structure, the EA optimization method finds viscosity profiles characterized by low-viscosity in a depth range corresponding to the transition zone, and relatively uniform elsewhere.
    Description: NERIES
    Description: Published
    Description: 19-32
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: JCR Journal
    Description: partially_open
    Keywords: mantle rheology ; inverse theory ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...