ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (6)
  • 2010-2014
  • 1995-1999  (6)
  • 1999  (6)
Collection
Publisher
Years
  • 2010-2014
  • 1995-1999  (6)
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 9315-9324 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The shapes of the ν1 and 2ν2 isotropic Raman Q-branch of CO2 perturbed by argon and helium have been measured by Stimulated Raman Spectroscopy (SRS) or coherent anti-Stokes Raman Spectroscopy (CARS) techniques. The data have been successfully analyzed with an energy corrected sudden (ECS) approximation model based on basic rates determined independently. Finally comparison of the present data with time resolved double resonance experiments allows us to discuss the physical origin of the two empirical constants which account for the shift and broadening of the branch due to vibrational effects. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The energy corrected sudden approach is used in order to deduce collisional parameters and to model infrared quantities in Π←Σ bands of CO2–He and CO2–Ar mixtures in the 200–300 K temperature range. Measured line-broadening coefficients and absorption in the Q-branch of the ν2 band at moderate pressure are first used for the determination (from a fit) of the time constant associated with the relaxation of the second order traceless tensor of the rotational angular momentum (all other collisional quantities have been determined previously). The results obtained are consistent with previous (calculated) temperature dependent values of the depolarized Rayleigh cross sections. The model is then successfully tested through computations of absorption in the ν2 and (ν1+ν2)I bands at elevated densities. Analysis of line-mixing effects is made, including study of the influence of interbranch transfers and of Coriolis coupling. Differences between the effects of collisions with He and Ar are pointed out and explained. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 1959-1968 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A model based on the energy corrected sudden approximation is used in order to account for line-mixing effects in N2O Q branches of Σ↔Π bands. The performance of this theoretical approach is demonstrated by comparisons with many (about 70) N2O–N2 and N2O–O2 laboratory spectra recorded in the 5 and 17 μm regions by three instrument setups; the Q branches of the 2ν20e–ν21f (near 579.3 cm−1), ν2 (near 588.8 cm−1), and ν2+ν3 (near 2798.3 cm−1) bands are investigated for different pressures (0.1–2.0 atm) and temperatures (200–300 K). The model is used to generate a set of line-mixing parameters for the calculation of the absorption by the ν2 Q branch under atmospheric conditions. These data are tested by comparisons between computed stratospheric emissions and values measured using a balloon-borne high resolution Fourier transform instrument. The results confirm the need to account for the effects of line mixing and demonstrate the capability of the model to represent the N2O absorption in a region which can be used for the retrieval of N2O5 mixing ratios. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 845-849 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have studied the effects of inserting Si/Si0.6Ge0.4 strain-balanced superlattices (SLs) into Si0.8Ge0.2 (001) virtual substrates. The SiGe SL layer thickness chosen was larger than the critical thickness for elastic relaxation and generated numerous hemicylindrical features oriented along the 〈100〉 directions. These features lead, when covered by Si0.8Ge0.2, to a disruption of the well-ordered surface crosshatch along the 〈110〉 directions, and to a significant lowering of the surface roughness. There is also evidence for some filtering of the threading dislocations by the SL. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 1951-1957 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have performed large and small angle x-ray scattering measurements on CdTe/MgTe superlattices. The individual thicknesses of the CdTe and MgTe layers, together with the period dispersion and the crystallographic quality of the stacking, were extracted from large-angle x-ray diffraction. The Fresnel optical method and the distorted wave Born approximation were used to analyze the small angle x-ray scattering data. Specular reflectivity shows that the interface roughness is quite large for the two CdTe/MgTe superlattices grown either by conventional molecular beam epitaxy or by atomic layer epitaxy with however in the latter case a strong asymmetry between the direct and inverted interfaces. The effective MgTe concentration is determined from the refractive index. A model of correlated interface profiles is successfully used to simulate the diffuse scattering, and to gain access to the lateral correlation length of the roughness (Λ(parallel)=1500±750 Å for both samples); moreover, we demonstrate that the layers are almost completely correlated over the sample thickness in the growth direction. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 6850-6863 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Line mixing effects are studied in the v3 band of CH4 perturbed by Ar and He at room temperature. Experiments have been made in the 2800–3200 cm−1 spectral region using four different setups. They cover a wide range of total densities, including low (0.25–2 atm), medium (25–100 atm), and high (200–1000 atm) pressure conditions. Analysis of the spectra demonstrates that the spectral shapes (of the band, the Q branch, the P and R manifolds,...) are significantly influenced by line mixing. The theoretical approach proposed in the preceding paper is used in order to model and analyze these effects. As done previously, semiclassical state-to-state rates are used together with a few empirical constants. Comparisons between measurements and spectra computed with and without the inclusion of line mixing are made. They prove the quality of the approach which satisfactorily accounts for the effects of pressure and of rotational quantum numbers on the spectral shape. It is shown that collisions with He and Ar lead to different line-coupling schemes (e.g., more coupling within the branches and less between branches) and hence to different shapes. The influence of line coupling between different branches and manifolds is evidenced and studied using high pressure spectra and absorption in the band wings. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...