ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (5)
  • 1987  (5)
Collection
Keywords
Years
  • 1985-1989  (5)
Year
  • 1
    Publication Date: 1987-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-01-01
    Description: Resistive force exerted by the Crary Ice Rise on its ice-shelf/ice-stream environment and back-pressure force transmitted across the grounding lines of Ice Streams A and B are calculated from airborne radio echo-sounding data and measurements of surface strain-rates. Resistance generated by the ice rise ranges in magnitude between 45 and 51% of the back-pressure force on the ice streams (depending on the flow law). The mechanical-energy budget of the ice rise is computed by considering work done against frictional forces at the perimeter of the ice rise and gravitational potential energy fluxes associated with changing mass distribution in the ice/ocean system. Energy dissipated by flow surrounding the ice rise is balanced by potential energy released within Ice Streams A and B, and accounts for between 15 and 49% of the work done by the ice streams against ice-shelf back pressure at their grounding lines. Mass balance of the ice rise, and the discharge of Ice Streams A and B, are calculated from surface-velocity and snow-accumulation measurements. The ice rise and its immediate environment gain mass by advection and snowfall at a rate equivalent to an area-averaged thickening rate of 0.44 ± 0.06 m/year. This mass gain may be balanced by regional basal melting (which we do not measure), or could contribute to ice-rise expansion through regional thickening and ice-shelf grounding. Approximately 1/4 to 1/2 of the excess volume discharged by Ice Streams A and B above snow accumulation in their catchment areas is deposited in the vicinity of the ice rise (or melted from the bottom of the ice shelf). This suggests that the ice rise may have formed as a consequence of recent ice-stream acceleration, and that its continued growth may eventually reverse this trend of ice-stream discharge.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1987-01-01
    Description: Resistive force exerted by the Crary Ice Rise on its ice-shelf/ice-stream environment and back-pressure force transmitted across the grounding lines of Ice Streams A and B are calculated from airborne radio echo-sounding data and measurements of surface strain-rates. Resistance generated by the ice rise ranges in magnitude between 45 and 51% of the back-pressure force on the ice streams (depending on the flow law). The mechanical-energy budget of the ice rise is computed by considering work done against frictional forces at the perimeter of the ice rise and gravitational potential energy fluxes associated with changing mass distribution in the ice/ocean system. Energy dissipated by flow surrounding the ice rise is balanced by potential energy released within Ice Streams A and B, and accounts for between 15 and 49% of the work done by the ice streams against ice-shelf back pressure at their grounding lines. Mass balance of the ice rise, and the discharge of Ice Streams A and B, are calculated from surface-velocity and snow-accumulation measurements. The ice rise and its immediate environment gain mass by advection and snowfall at a rate equivalent to an area-averaged thickening rate of 0.44 ± 0.06 m/year. This mass gain may be balanced by regional basal melting (which we do not measure), or could contribute to ice-rise expansion through regional thickening and ice-shelf grounding. Approximately 1/4 to 1/2 of the excess volume discharged by Ice Streams A and B above snow accumulation in their catchment areas is deposited in the vicinity of the ice rise (or melted from the bottom of the ice shelf). This suggests that the ice rise may have formed as a consequence of recent ice-stream acceleration, and that its continued growth may eventually reverse this trend of ice-stream discharge.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The stress, mass, and energy-dissipation budgets of Crary Ice Rise are analyzed using field data collected during the 1983-1985 austral summers and in previous field programs. In addition, the net back pressure and ice-discharge rate along the grounding lines of ice streams are calculated to assess the effect of the ice rise on the surrounding flow. Comparison of the ice-rise budgets with the analysis of grounding-line data confirms the influence of the ice rise on ice-sheet stability, and suggests that Crary Ice Rise may have formed recently in response to an acceleration of one of the ice streams. It is concluded that feedback between ice-stream acceleration and ice-rise formation may control the future evolution of the above ice stream and promote long-term grounding-line stability in the face of strong natural fluctuations.
    Keywords: GEOPHYSICS
    Type: Journal of Glaciology (ISSN 0022-1430); 33; 114; 218-230
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Data collected in the region of the mouth of ice stream B, West Antarctica, during three field seasons are presented. The physical characteristics of the mouth of ice stream B are described, and the dynamics in the vicinity of the DNB network are discussed. The dynamics of ice stream B from DNB to the grounding line is briefly considered, and a force analysis of the grounding line region is made. The results demonstrate that the dynamic situation of the region at the mouth of ice stream B is distinctly different from either the greater portion of the ice stream upstream or the Ross ice shelf downstream.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 92; 8885-889
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...