ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 1987-01-01
    Description: Resistive force exerted by the Crary Ice Rise on its ice-shelf/ice-stream environment and back-pressure force transmitted across the grounding lines of Ice Streams A and B are calculated from airborne radio echo-sounding data and measurements of surface strain-rates. Resistance generated by the ice rise ranges in magnitude between 45 and 51% of the back-pressure force on the ice streams (depending on the flow law). The mechanical-energy budget of the ice rise is computed by considering work done against frictional forces at the perimeter of the ice rise and gravitational potential energy fluxes associated with changing mass distribution in the ice/ocean system. Energy dissipated by flow surrounding the ice rise is balanced by potential energy released within Ice Streams A and B, and accounts for between 15 and 49% of the work done by the ice streams against ice-shelf back pressure at their grounding lines. Mass balance of the ice rise, and the discharge of Ice Streams A and B, are calculated from surface-velocity and snow-accumulation measurements. The ice rise and its immediate environment gain mass by advection and snowfall at a rate equivalent to an area-averaged thickening rate of 0.44 ± 0.06 m/year. This mass gain may be balanced by regional basal melting (which we do not measure), or could contribute to ice-rise expansion through regional thickening and ice-shelf grounding. Approximately 1/4 to 1/2 of the excess volume discharged by Ice Streams A and B above snow accumulation in their catchment areas is deposited in the vicinity of the ice rise (or melted from the bottom of the ice shelf). This suggests that the ice rise may have formed as a consequence of recent ice-stream acceleration, and that its continued growth may eventually reverse this trend of ice-stream discharge.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-01-01
    Description: Resistive force exerted by the Crary Ice Rise on its ice-shelf/ice-stream environment and back-pressure force transmitted across the grounding lines of Ice Streams A and B are calculated from airborne radio echo-sounding data and measurements of surface strain-rates. Resistance generated by the ice rise ranges in magnitude between 45 and 51% of the back-pressure force on the ice streams (depending on the flow law). The mechanical-energy budget of the ice rise is computed by considering work done against frictional forces at the perimeter of the ice rise and gravitational potential energy fluxes associated with changing mass distribution in the ice/ocean system. Energy dissipated by flow surrounding the ice rise is balanced by potential energy released within Ice Streams A and B, and accounts for between 15 and 49% of the work done by the ice streams against ice-shelf back pressure at their grounding lines. Mass balance of the ice rise, and the discharge of Ice Streams A and B, are calculated from surface-velocity and snow-accumulation measurements. The ice rise and its immediate environment gain mass by advection and snowfall at a rate equivalent to an area-averaged thickening rate of 0.44 ± 0.06 m/year. This mass gain may be balanced by regional basal melting (which we do not measure), or could contribute to ice-rise expansion through regional thickening and ice-shelf grounding. Approximately 1/4 to 1/2 of the excess volume discharged by Ice Streams A and B above snow accumulation in their catchment areas is deposited in the vicinity of the ice rise (or melted from the bottom of the ice shelf). This suggests that the ice rise may have formed as a consequence of recent ice-stream acceleration, and that its continued growth may eventually reverse this trend of ice-stream discharge.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1986-01-01
    Description: A map of the surface elevation for the southern half of the Greenland ice sheet has been produced from data gathered by the radar altimeter on board the SEASAT satellite. From June 1978 until September 1978, useful data were collected during most passes over the ice sheet, but data was not collected continuously along each pass. Over 85 000 separate ranges were obtained from the satellite to the surface at points spaced 662 m apart along each orbital pass.Techniques required for the reduction of the recorded return waveforms to surface elevations have previously been described in a series of papers (Martin and others, 1983; Brenner and others, 1983; and Zwally and others, 1983). Once all corrections have been applied to the range data due to atmospheric effects, ocean and earth tides, and orbital perturbations, the set of ranges at orbital crossing points (where ascending orbits crossed descending orbits) had a mean relative error of 2.9 m, with a standard deviation of ±2.9 m. Elevations over the flatter and smoother portions of the ice sheet have a precision as small as ±0.25 m, while data over sloping and rough areas are of lower quality. Along each orbital track, the data are corrected for the slope-induced error.The reduced set of surface elevations has been interpolated to assigned elevation values at the nodal points of a regular grid with a 10 km spacing (polar stereographic projection). This grid was then contoured at intervals of 50 m above 2400 m altitude and 100 m at lower elevations. Similar grids of slope-induced error corrections were contoured to provide some measure of its effect on the data. Ancillary plots of parameters of the fitting and gridding process are included to help in estimating the quality of the derived surface topography in different regions.The surface elevation contour map shows the existence of distinct drainage basins within the ice sheet — most notably in the southern and eastern areas. This detail will prove most useful in the delineation of these basins for hydrological or glaciological studies. In combination with ice-thickness data, these elevation data permit a more accurate measurement of the bedrock elevation. The corrected altimeter data in orbital-pass and map format have been provided to the National Space Science Data Center at Goddard Space Flight Center and to the World Data Center-A, Glaciology, as a source of information to be used by other scientific investigators. These data have already been used to produce detailed maps of the topography in more localized areas (e.g. Figure 2, from Zwally and others, 1983 and Figure 2 of Bindschadler, 1984).
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1986-01-01
    Description: A map of the surface elevation for the southern half of the Greenland ice sheet has been produced from data gathered by the radar altimeter on board the SEASAT satellite. From June 1978 until September 1978, useful data were collected during most passes over the ice sheet, but data was not collected continuously along each pass. Over 85 000 separate ranges were obtained from the satellite to the surface at points spaced 662 m apart along each orbital pass. Techniques required for the reduction of the recorded return waveforms to surface elevations have previously been described in a series of papers (Martin and others, 1983; Brenner and others, 1983; and Zwally and others, 1983). Once all corrections have been applied to the range data due to atmospheric effects, ocean and earth tides, and orbital perturbations, the set of ranges at orbital crossing points (where ascending orbits crossed descending orbits) had a mean relative error of 2.9 m, with a standard deviation of ±2.9 m. Elevations over the flatter and smoother portions of the ice sheet have a precision as small as ±0.25 m, while data over sloping and rough areas are of lower quality. Along each orbital track, the data are corrected for the slope-induced error. The reduced set of surface elevations has been interpolated to assigned elevation values at the nodal points of a regular grid with a 10 km spacing (polar stereographic projection). This grid was then contoured at intervals of 50 m above 2400 m altitude and 100 m at lower elevations. Similar grids of slope-induced error corrections were contoured to provide some measure of its effect on the data. Ancillary plots of parameters of the fitting and gridding process are included to help in estimating the quality of the derived surface topography in different regions. The surface elevation contour map shows the existence of distinct drainage basins within the ice sheet — most notably in the southern and eastern areas. This detail will prove most useful in the delineation of these basins for hydrological or glaciological studies. In combination with ice-thickness data, these elevation data permit a more accurate measurement of the bedrock elevation. The corrected altimeter data in orbital-pass and map format have been provided to the National Space Science Data Center at Goddard Space Flight Center and to the World Data Center-A, Glaciology, as a source of information to be used by other scientific investigators. These data have already been used to produce detailed maps of the topography in more localized areas (e.g. Figure 2, from Zwally and others, 1983 and Figure 2 of Bindschadler, 1984).
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1986-01-01
    Description: The Seasat radar altimeter observations of a 100 km2 area in South Greenland are compared to a detailed, ground-based survey, using “geoceivers” and pressure altimeters. The comparison shows the Seasat measurement of distance between satellite and earth to be accurate to the level of the geoceiver determined surface (±2 m). Due to the great distance between satellite and surface, finer details of surface topography are not revealed in the satellite measurements. As the satellite tends to lock onto hills in the vicinity of the sub-satellite track, the satellite tends to overestimate the true surface elevation. However, a similar altimeter would make a similar overestimate, allowing accurate differential measurement of volume changes between the two surveys.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1987-01-01
    Description: As part of a systematic analysis of Seasat radar altimetry data to obtain Antarctic ice fronts and ice-shelf elevations north of lat. 72° S., Fimbulisen (between long. 12°W. and 08°E.) and the Amery Ice Shelf (around long. 72°E.) are mapped. Interactive computer analysis is used to examine and correct the altimetry range measurements and derive the ice-front positions. Surface elevations and ice-front positions from radar altimetry are compared with ice fronts, ice rises, crevasse zones, and grounding lines identified in Landsat imagery. By comparison of the visible features in imagery and the computer-contoured elevations from radar altimetry, the radar-elevation mapping on some ice rises is confirmed, but some spurious contours are also identified. During the interval between the 1974 Landsat imagery and the 1978 radar altimetry, the central part of the Amery Ice Shelf front advanced 1.5 ± 0.6 km/a, which is in agreement with the ice-velocity measurements of 1.1 ± 0.1 km/a (Budd and others 1982), suggesting negligible calving in the central part of the ice shelf. The undulating surface and small mean slope from the grounding line to about lat. 70°S. suggest a zone of partial grounding similar to Rutford Ice Stream, On Fimbulisen, some previously unmapped ice rises are identified. The ridge of the Jutul-straumen ice tongue is shown to be about 20 m above the surrounding ice and laterally expanding as it flows northward to the ice front. Icebergs within the sea ice and a zone of shore-fast ice are also identified with the same technique used to map the ice-shelf front.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1987-01-01
    Description: Landsat Thematic Mapper (TM) data have been analyzed to study the reflectivity characteristics of three glaciers: the Grossglockner mountain group of glaciers in Austria and the McCall and Meares Glaciers in Alaska, USA. The ratio of TM band 4 (0.76–0.90 μm) to TM band 5 (1.55–1.75 μm) was found to be useful for enhancing reflectivity differences on the glaciers. Using this ratio, distinct zones of similar reflectivity were noted on the Grossglockner mountain group of glaciers and on the Meares Glacier; no distinct zones were observed on the McCall Glacier. On the TM subscene containing the Grossglockner mountain group of glaciers, 28.2% of the glacierized area was determined to be in the zone corresponding most closely to the ablation area, and 71.8% with the location of the accumulation area. Using these measurements, the glacier system has an accumulation area ratio (AAR) of approximately 0.72. Within the accumulation area, two zones of different reflectivity were delineated. Radiometric surface temperatures were measured using TM band 6 (10.4–12.5 μm) on the Grossglockner mountain group of glaciers and on the Meares Glacier. The average radiometric surface temperature of the Grossglockner mountain group of glaciers decreased from 0.9 ± 0.34 °C in the ablation area, to −0.9 ± 0.83 C in the accumulation area.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1987-01-01
    Description: As part of a systematic analysis of Seasat radar altimetry data to obtain Antarctic ice fronts and ice-shelf elevations north of lat. 72° S., Fimbulisen (between long. 12°W. and 08°E.) and the Amery Ice Shelf (around long. 72°E.) are mapped. Interactive computer analysis is used to examine and correct the altimetry range measurements and derive the ice-front positions. Surface elevations and ice-front positions from radar altimetry are compared with ice fronts, ice rises, crevasse zones, and grounding lines identified in Landsat imagery. By comparison of the visible features in imagery and the computer-contoured elevations from radar altimetry, the radar-elevation mapping on some ice rises is confirmed, but some spurious contours are also identified. During the interval between the 1974 Landsat imagery and the 1978 radar altimetry, the central part of the Amery Ice Shelf front advanced 1.5 ± 0.6 km/a, which is in agreement with the ice-velocity measurements of 1.1 ± 0.1 km/a (Budd and others 1982), suggesting negligible calving in the central part of the ice shelf. The undulating surface and small mean slope from the grounding line to about lat. 70°S. suggest a zone of partial grounding similar to Rutford Ice Stream, On Fimbulisen, some previously unmapped ice rises are identified. The ridge of the Jutul-straumen ice tongue is shown to be about 20 m above the surrounding ice and laterally expanding as it flows northward to the ice front. Icebergs within the sea ice and a zone of shore-fast ice are also identified with the same technique used to map the ice-shelf front.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1990-01-01
    Description: The properties of synthetic aperture radar (SAR) imagery are appropriate for its use to map snow facies. These facies, defined by Benson (1962), are subdivisions of the accumulation area of an ice sheet or polar glacier and represent the interaction of the ice mass with the climate through the processes of snow accumulation and melting. Changes in these climatic parameters are expected to cause changes in the extent and character of these facies. The ability of SAR to discriminate these facies is due to the significant amount of sub-surface volume scattering in the measured radar backscatter signal and the strong absorption of radar energy by liquid water. The amount of volume scattering is dependent on the size and distribution of scatterers in the medium. This dependence varies over the size range of snow grains to ice lenses. Specific examples of the ability to detect different scatterer populations in ice sheets with SAR are shown. Other examples are given to demonstrate the reduction of backscatter signal when liquid water is present.Another important application of SAR data is the determination of surface velocity. Coregistration of a SAR and a TM image spanning an eight-year period was completed for an area in south-western Greenland. The composite image shows that, while the network of surface streams is nearly unchanged, their distance from lakes upstream increased over the eight-year interval between images. Because the lakes are likely fixed in space, a result of surface depressions whose positions are determined by the stationary bedrock topography, the displacement of the stream network was used to calculate a surface velocity of 40 ± 10 m per year near the equilibrium line.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-01-01
    Description: Ten Landsat Thematic Mapper images together show Ice Streams E, D and most of Ice Stream C on Siple Coast, West Antarctica. The images are interpreted to reveal aspects of both spatial and temporal evolution of the ice streams. Onset of ice-stream flow appears to occur at distributed sites within the ice-stream catchment, and the apparent enhanced flow continues in channels until they join, forming the main ice stream. Most crevassing on these ice streams is associated with features of horizontal dimensions between 5 and 20 km. We suggest these features are caused by bed structures which may be an important source of restraint to ice flow, similar to ice rumples on ice shelves. A pattern of features near the grounding line of the now-stagnant Ice Stream C are interpreted as having formed because there was a period of reduced flux before the ice stream stopped.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...