ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1975-1979  (3)
  • 1978  (3)
Collection
Years
  • 1975-1979  (3)
Year
  • 1
    Publication Date: 2011-08-17
    Description: Solar cells operated in space are subject to degradation from electron and proton radiation damage. It has been found that for deep junction p-GaAlAs/p-GaAs solar cells some of the electron radiation damage is removed by annealing the cells at 200 C. The reported investigation shows that shallow junction p-GaAlAs/p-GaAs/n-GaAs heteroface solar cells irradiated with 1 MeV electrons show a more complete recovery of short-circuit current than do the deep junction cells. The heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells studied were fabricated using the etch-back epitaxy process.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Electrochemical Society; vol. 125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-17
    Description: Measurements of thermal annealing of GaAlAs/GaAs solar cells damaged by 1 MeV electron irradiation are reported, and the magnitude of the short-circuit current recovery is discussed. The damaged cells are annealed in a vacuum at 200 C. A cell irradiated at 10 to the 13th power electrons per sq cm recovers all its lost short-circuit current after 15 hours of annealing. Possible application of the annealing process to solar cells in space is also considered.
    Keywords: SOLID-STATE PHYSICS
    Type: Electrochemical Society; vol. 125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells with junction depths of 0.8, 1.5, and 4 microns were irradiated with 1 MeV electrons. The short-circuit current for the 4 micron junction depth cells is significantly reduced by the electron irradiation. Reduction of the junction depth to 1.5 microns improves the electron radiation resistance of the cells while further reduction of the junction depth to 0.8 microns improves the stability of the cells even more. Primary degradation is in the blue region of the spectrum. Considerable recovery of lost response is obtained by annealing the cells at 200 C. Computer modeling shows that the degradation is caused primarily by a reduction in the minority carrier diffusion length in the p-GaAs.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: Photovoltaic Specialists Conference; Jun 05, 1978 - Jun 08, 1978; Washington, DC
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...