ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (17)
  • 1
    Publication Date: 2020-02-12
    Description: In the present paper we describe the on-land field operations integrated in the TOMO-ETNA experiment carried out in June-November 2014 at Mt. Etna volcano and surrounding areas. This terrestrial campaign consists in the deployment of 90 short-period portable three-component seismic stations, 17 Broadband seismometers and the coordination with 133 permanent seismic station belonging to Italy’s Istituto Nazionale di Geofisica e Vulcanologia (INGV). This temporary seismic network recorded active and passive seismic sources. Active seismic sources were generated by an array of air-guns mounted in the Spanish oceanographic vessel “Sarmiento de Gamboa” with a power capacity of up to 5200 cubic inches. In total more than 26,000 shots were fired and more than 450 local and regional earthquakes were recorded. We describe the whole technical procedure followed to guarantee the success of this complex seismic experiment. We started with the description of the location of the potential safety places to deploy the portable network and the products derived from this search (a large document including full characterization of the sites, owners and indication of how to arrive to them). A full technical description of the seismometers and seismic sources is presented. We show how the portable seismic network was deployed, maintained and recovered in different stages. The large international collaboration of this experiment is reflected in the participation of more than 75 researchers, technicians and students from different institutions and countries in the on-land activities. The main objectives of the experiment were achieved with great success.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    In:  Scientific Technical Report STR - Data
    Publication Date: 2021-02-09
    Description: The KISS network was installed in the frame of the “Klyuchevskoy Investigation - Seismic Structure of an extraordinary volcanic system” project and recorded data between summer 2015 and summer 2016 in one of the world’s largest clusters of subduction volcanoes - the Klyuchevskoy volcanic group (KVG). It is located in eastern Russia at the northern end of the Kuril-Kamchatka subduction zone close to its intersection with the Aleutian arc and the north-western termination of Hawaii-Emperor seamount chain. Additional to the 4700m high Mount Klyuchevskoy the KVG contains 12 other volcanoes that have together erupted about 1 cubic meter rock per second averaged over the past 10,000 years. Among those Klyuchevskoy, Bezymianny and Tolbachik were the most active ones during the last decades with eruptions styles ranging from explosive to Hawaiian-type. The KISS experiment is designed to investigate the volcanic and seismic processes and its structural setting in the KVG. The network covers a circular region of about 80km diameter with some linear extensions. It includes data from 77 temporary seismic stations with broadband and short period sensors that were installed on concrete plates in about 60cm deep holes. Due to the local conditions the stations were battery powered and could not be serviced during the experiment. GPS reception of the digitizers was not continuous at all stations due to thick snow cover and vegetation. Waveform data are available from the GEOFON data centre, under network code X9, and are embargoed until end of 2019.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Geochemistry Geophysics Geosystems (G3)
    Publication Date: 2020-02-12
    Description: In this study we present the new tomographic code ANITA which provides 3-D anisotropic P and isotropic S velocity distribution based on P and S traveltimes from local seismicity. For the P anisotropic model, we determine four parameters for each parameterization cell. This represents an orthorhombic anisotropy with one predefined direction oriented vertically. Three of the parameters describe slowness variations along three horizontal orientations with azimuths of 0°, 60°, and 120°, and one is a perturbation along the vertical axis. The nonlinear iterative inversion procedure is similar to that used in the LOTOS code. We have implemented this algorithm for the updated data set of central Java, part of which was previously used for the isotropic inversion. It was obtained that the crustal and uppermost mantle velocity structure beneath central Java is strongly anisotropic with 7–10% of maximal difference between slow and fast velocity in different directions. In the forearc (area between southern coast and volcanoes), the structure of both isotropic and anisotropic structure is strongly heterogeneous. Variety of anisotropy orientations and highly contrasted velocity patterns can be explained by a complex block structure of the crust. Beneath volcanoes we observe faster velocities in vertical direction, which is probably an indicator for vertically oriented structures (channels, dykes). In the crust beneath the middle part of central Java, north to Merapi and Lawu volcanoes, we observe a large and very intense anomaly with a velocity decrease of up to 30% and 35% for P and S models, respectively. Inside this anomaly E-W orientation of fast velocity takes place, probably caused by regional extension stress regime. In a vertical section we observe faster horizontal velocities inside this anomaly that might be explained by layering of sediments and/or penetration of quasi-horizontal lenses with molten magma. In the mantle, trench parallel anisotropy is observed throughout the study area. Such anisotropy in the slab entrained corner flow may be due to presence of B-type olivine having predominant axis parallel to the shear direction, which appears in conditions of high water or/and melting content.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: Here we present the results of local source tomographic inversion beneath central Java. The data set was collected by a temporary seismic network. More than 100 stations were operated for almost half a year. About 13,000 P and S arrival times from 292 events were used to obtain three-dimensional (3-D) Vp, Vs, and Vp/Vs models of the crust and the mantle wedge beneath central Java. Source location and determination of the 3-D velocity models were performed simultaneously based on a new iterative tomographic algorithm, LOTOS-06. Final event locations clearly image the shape of the subduction zone beneath central Java. The dipping angle of the slab increases gradually from almost horizontal to about 70°. A double seismic zone is observed in the slab between 80 and 150 km depth. The most striking feature of the resulting P and S models is a pronounced low-velocity anomaly in the crust, just north of the volcanic arc (Merapi-Lawu anomaly (MLA)). An algorithm for estimation of the amplitude value, which is presented in the paper, shows that the difference between the fore arc and MLA velocities at a depth of 10 km reaches 30% and 36% in P and S models, respectively. The value of the Vp/Vs ratio inside the MLA is more than 1.9. This shows a probable high content of fluids and partial melts within the crust. In the upper mantle we observe an inclined low-velocity anomaly which links the cluster of seismicity at 100 km depth with MLA. This anomaly might reflect ascending paths of fluids released from the slab. The reliability of all these patterns was tested thoroughly.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: The KISS network was installed in the frame of the "Klyuchevskoy Investigation - Seismic Structure of an extraordinary volcanic system" project and recorded data between summer 2015 and summer 2016 in one of the world's largest clusters of subduction volcanoes - the Klyuchevskoy volcanic group (KVG). It is located in eastern Russia at the northern end of the Kuril-Kamchatka subduction zone close to its intersection with the Aleutian arc and the north-western termination of Hawaii-Emperor seamount chain. Additional to the 4700m high Mount Klyuchevskoy the KVG contains 12 other volcanoes that have together erupted about 1 cubic meter rock per second averaged over the past 10,000 years. Among those Klyuchevskoy, Bezymianny and Tolbachik were the most active ones during the last decades with eruptions styles ranging from explosive to Hawaiian-type. The KISS experiment is designed to investigate the volcanic and seismic processes and its structural setting in the KVG. The network covers a circular region of about 80km diameter with some linear extensions. It includes data from 77 temporary seismic stations with broadband and short period sensors that were installed on concrete plates in about 60cm deep holes. Due to the local conditions the stations were battery powered and could not be serviced during the experiment. GPS reception of the digitizers was not continuous at all stations due to thick snow cover and vegetation. Waveform data are available from the GEOFON data centre, under network code X9, and are embargoed until end of 2019.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: The structure and seismicity of the subduction zone of central Costa Rica have been investigated with local earthquake tomography down to ca.  50 km depth. Seismic traveltime data sets of three on- and offshore seismic networks were combined for a simultaneous inversion of hypocentre locations, 3-D structure of P-wave velocity and Vp/Vs ratio using about 2000 high-quality events. The seismicity and slab geometry as well as Vp and Vp/Vs show significant lateral variation along the subduction zone corresponding to the changes of the incoming plate which consists of serpentinized oceanic lithosphere in the northwest, a seamount province in the centre and the subducting Cocos Ridge in the southeast of the investigation area. Three prominent features can be identified in the Vp and Vp/Vs tomograms: a high-velocity zone with a perturbation of 4–10 per cent representing the subducting slab, a low-velocity zone (10–20 per cent) in the forearc crust probably caused by deformation, fluid release and hydration and a low-velocity zone below the volcanic arc related to upwelling fluids and magma. Unlike previously suggested, the dip of the subducting slab does not decrease to the south. Instead, an average steepening of the plate interface from 30° to 45° is observed from north to south and a transition from a plane to a step-shaped plate interface. This is connected with a change in the deformation style of the overriding plate where roughly planar, partly conjugated, clusters of seismicity of regionally varying dip are observed. It can be shown that the central Costa Rica Deformation Belt represents a deep crustal transition zone extending from the surface down to 40 km depth. This transition zone indicates the lateral termination of the active part of the volcanic chain and seems to be related to the changing structure of the incoming plate as well.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Language: English
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: The Toba Caldera has been the site of several large explosive eruptions in the recent geological past, including the world’s largest Pleistocene eruption 74,000 years ago. The major cause of this particular behaviour may be the subduction of the fluid-rich Investigator Fracture Zone directly beneath the continental crust of Sumatra and possible tear of the slab. Here we show a new seismic tomography model, which clearly reveals a complex multilevel plumbing system beneath Toba. Large amounts of volatiles originate in the subducting slab at a depth of ∼150 km, migrate upward and cause active melting in the mantle wedge. The volatile-rich basic magmas accumulate at the base of the crust in a ∼50,000 km3 reservoir. The overheated volatiles continue ascending through the crust and cause melting of the upper crust rocks. This leads to the formation of a shallow crustal reservoir that is directly responsible for the supereruptions.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: A set of seismological stations was deployed in the Central Andes region along a ~600 km long profile at 21°S between Chile and Bolivia and operated for a period of almost two years, from March 2002 to January 2004. Here we present the results of the tomographic inversion for P-wave velocity anomalies, based on teleseismic data recorded at the stations. The reliability of the results has been checked by a series of synthetic tests. The tomographic images show high-velocities on the west of the profile that are indicative of cold material from the fore-arc. A low-velocity anomaly is detected at the border between the fore- and the volcanic are where the Quebrada Blanca seismic anomaly was previously described. This anomaly might be related to the presence of fluids that originate at the cluster of earthquakes at a depth of ~100 km in the subducted plate. A strong low-velocity anomaly is detected beneath the entire Altiplano plateau and part of the Eastern Cordillera, in agreement with previous receiver function results. The Brazilian Shield is thought to be responsible for the strong high-velocity anomaly underneath the Interandean and Subandean regions.
    Keywords: 550 - Earth sciences
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...