ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (2)
Collection
Language
  • English  (2)
Years
  • 1
    Publication Date: 2023-07-18
    Description: A multivariate linear regression model was proposed to achieve short period prediction of PM2.5 (fine particles with an aerodynamic diameter of 2.5 μm or less). The main parameters for the proposed model included data on aerosol optical depth (AOD) obtained through remote sensing, meteorological factors from ground monitoring (wind velocity, temperature, and relative humidity), and other gaseous pollutants (SO2, NO2, CO, and O3). Beijing City was selected as a typical region for the case study. Data on the aforementioned variables for the city throughout 2015 were used to construct two regression models, which were discriminated by annual and seasonal data, respectively. The results indicated that the regression model based on annual data had (R2 = 0.766) goodness-of-fit and (R2 = 0.875) cross-validity. However, the regression models based on seasonal data for spring and winter were more effective, achieving 0.852 and 0.874 goodness-of-fit, respectively. Model uncertainties were also given, with the view of laying the foundation for further study.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-09-12
    Description: Plasmaspheric hiss is an electromagnetic wave mode that occurs ubiquitously in the high-density plasmasphere and contributes crucially to the dynamic behavior of the Earth’s Van Allen radiation belts. While plasmaspheric hiss is commonly considered to be a broadband emission with frequencies from ∼100 Hz to several kHz, here we report Van Allen Probes measurements of unambiguous banded signatures of plasmaspheric hiss, uniquely characterized by an upper band above ∼200 Hz, a lower band below ∼100 Hz and a power gap in between. In statistics, banded plasmaspheric hiss occurs with the probability ~8% in the postnoon sector within 2.5-5.0 Earth radii, showing strong dependence on geomagnetic and solar wind conditions. Based upon observations, this talk will also discuss the possible mechanism(s) that may account for the formation of banded hiss waves.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...