ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Englisch  (345)
  • 2020-2022  (345)
  • 1
    Publikationsdatum: 2021-09-27
    Beschreibung: The Global Carbon Budget 2018 (GCB2018) estimated by the atmospheric CO 2 growth rate, fossil fuel emissions, and modeled (bottom-up) land and ocean fluxes cannot be fully closed, leading to a “budget imbalance,” highlighting uncertainties in GCB components. However, no systematic analysis has been performed on which regions or processes contribute to this term. To obtain deeper insight on the sources of uncertainty in global and regional carbon budgets, we analyzed differences in Net Biome Productivity (NBP) for all possible combinations of bottom-up and top-down data sets in GCB2018: (i) 16 dynamic global vegetation models (DGVMs), and (ii) 5 atmospheric inversions that match the atmospheric CO 2 growth rate. We find that the global mismatch between the two ensembles matches well the GCB2018 budget imbalance, with Brazil, Southeast Asia, and Oceania as the largest contributors. Differences between DGVMs dominate global mismatches, while at regional scale differences between inversions contribute the most to uncertainty. At both global and regional scales, disagreement on NBP interannual variability between the two approaches explains a large fraction of differences. We attribute this mismatch to distinct responses to El Niño–Southern Oscillation variability between DGVMs and inversions and to uncertainties in land use change emissions, especially in South America and Southeast Asia. We identify key needs to reduce uncertainty in carbon budgets: reducing uncertainty in atmospheric inversions (e.g., through more observations in the tropics) and in land use change fluxes, including more land use processes and evaluating land use transitions (e.g., using high-resolution remote-sensing), and, finally, improving tropical hydroecological processes and fire representation within DGVMs.
    Schlagwort(e): 551.9 ; atmospheric inversions ; global carbon budget ; dynamic global vegetation models ; carbon cycle
    Sprache: Englisch
    Materialart: map
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-09-27
    Beschreibung: A new global climate model setup using FESOM2.0 for the sea ice-ocean component and ECHAM6.3 for the atmosphere and land surface has been developed. Replacing FESOM1.4 by FESOM2.0 promises a higher efficiency of the new climate setup compared to its predecessor. The new setup allows for long-term climate integrations using a locally eddy-resolving ocean. Here it is evaluated in terms of (1) the mean state and long-term drift under preindustrial climate conditions, (2) the fidelity in simulating the historical warming, and (3) differences between coarse and eddy-resolving ocean configurations. The results show that the realism of the new climate setup is overall within the range of existing models. In terms of oceanic temperatures, the historical warming signal is of smaller amplitude than the model drift in case of a relatively short spin-up. However, it is argued that the strategy of “de-drifting” climate runs after the short spin-up, proposed by the HighResMIP protocol, allows one to isolate the warming signal. Moreover, the eddy-permitting/resolving ocean setup shows notable improvements regarding the simulation of oceanic surface temperatures, in particular in the Southern Ocean.
    Schlagwort(e): 551.6 ; FESOM ; ocean model ; climate model ; unstructured mesh ; Finite Volume
    Sprache: Englisch
    Materialart: map
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-10-11
    Beschreibung: Geophysical and geochemical data indicate there is abundant fluid expulsion in the Nootka fault zone (NFZ) between the Juan de Fuca and Explorer plates and the Nootka continental slope. Here we combine observations from 〉20 years of investigations to demonstrate the nature of fluid-flow along the NFZ, which is the seismically most active region off Vancouver Island. Seismicity reaching down to the upper mantle is linked to near-seafloor manifestation of fluid flow through a network of faults. Along the two main fault traces, seismic reflection data imaged bright spots 100–300 m below seafloor that lie above changes in basement topography. The bright spots are conformable to sediment layering, show opposite-to-seafloor reflection polarity, and are associated with frequency reduction and velocity push-down indicating the presence of gas in the sediments. Two seafloor mounds ~15 km seaward of the Nootka slope are underlain by deep, nonconformable high-amplitude reflective zones. Measurements in the water column above one mound revealed a plume of warm water, and bottom-video observations imaged hydrothermal vent system biota. Pore fluids from a core at this mound contain predominately microbial methane (C1) with a high proportion of ethane (C2) yielding C1/C2 ratios 〈500 indicating a possible slight contribution from a deep source. We infer the reflective zones beneath the two mounds are basaltic intrusions that create hydrothermal circulation within the overlying sediments. Across the Nootka continental slope, gas hydrate-related bottom-simulating reflectors are widespread and occur at depths indicating heat flow values of 80–90 mW/m2.
    Schlagwort(e): 551 ; fluid flow ; Nootka transform fault ; gas hydrate ; intrusion ; heat flow
    Sprache: Englisch
    Materialart: map
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-09-24
    Beschreibung: The New Zealand Alpine Fault is a major plate boundary that is expected to be close to rupture, allowing a unique study of fault properties prior to a future earthquake. Here we present 3-D seismic data from the DFDP-2 drill site in Whataroa to constrain valley structures that were obscured in previous 2-D seismic data. The new data consist of a 3-D extended vertical seismic profiling (VSP) survey using three-component and fiber optic receivers in the DFDP-2B borehole and a variety of receivers deployed at the surface. The data set enables us to derive a detailed 3-D P wave velocity model by first-arrival traveltime tomography. We identify a 100–460 m thick sediment layer (mean velocity 2,200 ± 400 m/s) above the basement (mean velocity 4,200 ± 500 m/s). Particularly on the western valley side, a region of high velocities rises steeply to the surface and mimics the topography. We interpret this to be the infilled flank of the glacial valley that has been eroded into the basement. In general, the 3-D structures revealed by the velocity model on the hanging wall of the Alpine Fault correlate well with the surface topography and borehole findings. As a reliable velocity model is not only valuable in itself but also crucial for static corrections and migration algorithms, the Whataroa Valley P wave velocity model we have derived will be of great importance for ongoing seismic imaging. Our results highlight the importance of 3-D seismic data for investigating glacial valley structures in general and the Alpine Fault and adjacent structures in particular.
    Schlagwort(e): 622.15 ; vertical seismic profiling ; P wave velocity tomography ; distributed acoustic sensing ; Deep Fault Drilling Project ; subglacial valley
    Sprache: Englisch
    Materialart: map
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2021-09-09
    Beschreibung: It is well established that Africa is particularly exposed to climate extremes including heat waves, droughts, and intense rainfall events. How exposed Africa is to the co-occurrence of these events is however virtually unknown. This study provides the first analysis of projected changes in the co-occurrence of five such compound climate extremes in Africa, under a low (RCP2.6) and high (RCP8.5) emissions scenario. These changes are combined with population projections for a low (SSP1) and high (SSP3) population growth scenario, in order to provide estimates of the number of people that may be exposed to such events at the end of the 21st century. We make use of an ensemble of regional climate projections from the Coordinated Output for Regional Evaluations (CORE) project embedded in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework. This ensemble comprises five different Earth System Model/Regional Climate Model (ESM/RCM) combinations with three different ESMs and two RCMs. We show that all five compound climate extremes will increase in frequency, with changes being greater under RCP8.5 than RCP2.6. Moreover, populations exposed to these changes are greater under RCP8.5/SSP3, than RCP2.6/SSP1, increasing by 47- and 12-fold, respectively, compared to the present-day. Regions of Africa that are particularly exposed are West Africa, Central-East Africa, and Northeast and Southeast Africa. Increased exposure is mainly driven by the interaction between climate and population growth, and the effect of population alone. This has important policy implications in relation to climate mitigation and adaptation.
    Schlagwort(e): 551.6 ; compound climate extremes ; population exposure ; regional climate change ; Africa ; CORDEX-CORE ; regional climate models
    Sprache: Englisch
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-10-06
    Beschreibung: An approach to analyze high-end sea level rise is presented to provide a conceptual framework for high-end estimates as a function of time scale, thereby linking robust sea level science with stakeholder needs. Instead of developing and agreeing on a set of high-end sea level rise numbers or using an expert consultation, our effort is focused on the essential task of providing a generic conceptual framework for such discussions and demonstrating its feasibility to address this problem. In contrast, information about high-end sea level rise projections was derived previously either from a likely range emerging from the highest view of emissions in the Intergovernmental Panel on Climate Change assessment (currently the Representative Concentration Pathway 8.5 scenario) or from independent ad hoc studies and expert solicitations. Ideally, users need high-end sea level information representing the upper tail of a single joint sea level frequency distribution, which considers all plausible yet unknown emission scenarios as well as involved physical mechanisms and natural variability of sea level, but this is not possible. In the absence of such information we propose a framework that would infer the required information from explicit conditional statements (lines of evidence) in combination with upper (plausible) physical bounds. This approach acknowledges the growing uncertainty in respective estimates with increasing time scale. It also allows consideration of the various levels of risk aversion of the diverse stakeholders who make coastal policy and adaptation decisions, while maintaining scientific rigor.
    Schlagwort(e): 551.46 ; 627.4 ; sea level rise ; high‐end estimates
    Sprache: Englisch
    Materialart: map
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2020-12-14
    Beschreibung: The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-06-14
    Beschreibung: In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2021-08-25
    Beschreibung: Methane (CH4) emissions from natural landscapes constitute roughly half of global CH4 contributions to the atmosphere, yet large uncertainties remain in the absolute magnitude and the seasonality of emission quantities and drivers. Eddy covariance (EC) measurements of CH4 flux are ideal for constraining ecosystem-scale CH4 emissions due to quasi-continuous and high-temporal-resolution CH4 flux measurements, coincident carbon dioxide, water, and energy flux measurements, lack of ecosystem disturbance, and increased availability of datasets over the last decade. Here, we (1) describe the newly published dataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset of CH4 EC measurements (available at https://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4 includes half-hourly and daily gap-filled and non-gap-filled aggregated CH4 fluxes and meteorological data from 79 sites globally: 42 freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drained ecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverage globally because the majority of sites in FLUXNET-CH4 Version 1.0 are freshwater wetlands which are a substantial source of total atmospheric CH4 emissions; and (3) we provide the first global estimates of the seasonal variability and seasonality predictors of freshwater wetland CH4 fluxes. Our representativeness analysis suggests that the freshwater wetland sites in the dataset cover global wetland bioclimatic attributes (encompassing energy, moisture, and vegetation-related parameters) in arctic, boreal, and temperate regions but only sparsely cover humid tropical regions. Seasonality metrics of wetland CH4 emissions vary considerably across latitudinal bands. In freshwater wetlands (except those between 20∘ S to 20∘ N) the spring onset of elevated CH4 emissions starts 3 d earlier, and the CH4 emission season lasts 4 d longer, for each degree Celsius increase in mean annual air temperature. On average, the spring onset of increasing CH4 emissions lags behind soil warming by 1 month, with very few sites experiencing increased CH4 emissions prior to the onset of soil warming. In contrast, roughly half of these sites experience the spring onset of rising CH4 emissions prior to the spring increase in gross primary productivity (GPP). The timing of peak summer CH4 emissions does not correlate with the timing for either peak summer temperature or peak GPP. Our results provide seasonality parameters for CH4 modeling and highlight seasonality metrics that cannot be predicted by temperature or GPP (i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resource for diagnosing and understanding the role of terrestrial ecosystems and climate drivers in the global CH4 cycle, and future additions of sites in tropical ecosystems and site years of data collection will provide added value to this database. All seasonality parameters are available at https://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021). Additionally, raw FLUXNET-CH4 data used to extract seasonality parameters can be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a complete list of the 79 individual site data DOIs is provided in Table 2 of this paper.
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2021-07-14
    Beschreibung: Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).
    Sprache: Englisch
    Materialart: info:eu-repo/semantics/article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...