ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Papers in Special Publications / Geological Society London  (4)
Collection
  • Articles  (4)
Years
  • 1
    Publication Date: 2007-10-08
    Description: This chapter documents the fracture process associated with the early cooling stage of felsic magma. Characteristics of pre-exhumation joints include their spatial distribution in granite bodies, their fracture surface morphology, and geological and petrological evidence for the depth of fracture initiation. These characteristics allow inferences about the depth and the time of joint origin in the South Bohemian Pluton. The intrusion levels of currently exposed granites of the pluton were 7.4 km in the northern part and 14.3 km in the southern part. Within the northern Mrakotin Granite (Bor[s]ov) early NNE joints propagated while the granite was at a temperature near the solidus, and, in part, magma was still being injected, post-dated by thin granite dykes along NNE joints. Evidence for the pre-exhumation initiation of these joints comes from the geochronological dating of these late-granite dykes (1-2 cm thick) at 324.9 Ma in age, which were creating their own rupture in the rock. The timing of the pluton emplacement at 330-324 Ma and the cooling ages of 328-320 Ma have been given by previous studies. From fluid inclusions within the late-granite dykes that occupy joint surfaces, the trapping depth of the analysed inclusions was calculated to be 7.4 km. Near the solidus H2O separates during the crystallization of anhydrous phases. The associated increasing H2O pressure can initiate the first cracks and can generate a small portion of new granitic melt, which forces the cyclic fracture propagation together with mobile, low-viscosity residual melt' input into the fracture. The determination of the intrusion level and time at which the dykes began cooling provide evidence for the joint initiation at a depth of 7.4 km, which was connected with the level and process of final emplacement and early cooling of the Mrakotin Granite long before the main exhumation. At the earliest, the erosion of the upper rock pile, 7.4 km in thickness, started significantly after generation of the early joint sets. The NNE-trending joints are persistent in orientation throughout the South Bohemian Pluton, but the joint-surface morphology varies in all subplutons and occupies all sections of the stress intensity v. crack-propagation velocity curve (Wiederhorn-Bahat curve).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-10-13
    Description: Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa–Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820–760 Ma, 630–595 Ma and 560–520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid-Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global ‘Terminal Pan-African’ event (560–490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-06-21
    Description: To understand mechanisms of tufa biofilm calcification, selected karstwater stream stromatolites in Germany have been investigated with regard to their hydrochemistry, biofilm community, exopolymers, physicochemical microgradients, calcification pattern and lamination. In stream waters, CO2 degassing drives the increase in calcite saturation to maximum values of approximately 10-fold, independent from the initial Ca2+/alkalinity ratio. For the cyanobacteria of tufa biofilms, a culture-independent molecular approach showed that microscopy of resin-embedded biofilm thin sections underestimated the actual diversity of cyanobacteria, i.e. the six cyanobacteria morphotypes were opposed to nine different lineages of the 16S rDNA phylogeny. The same morphotype may even represent two genetically distant cyanobacteria and the closest relatives of tufa biofilm cyanobacteria may be from quite different habitats. Diatom diversity was even higher in the biofilm at the studied exemplar site than that of the cyanobacteria, i.e. 13 diatom species opposed to 9 cyanobacterial lineages. The non-phototrophic prokaryotic biofilm community is clearly different from the soil-derived community of the stream waters, and largely composed of flavobacteria, firmicutes, proteobacteria and actinobacteria. The exopolymeric biofilm matrix can be divided into three structural domains by fluorescence lectin-binding analysis. Seasonal and spatial variability of these structural EPS domains is low in the investigated streams. As indicated by microsensor data, biofilm photosynthesis is the driving mechanism in tufa stromatolite formation. However, photosynthesis-induced biofilm calcification accounts for only 10-20% of the total Ca2+ loss in the streams, and occurs in parallel to inorganic precipitation driven by CO2-degassing within the water column and on biofilm-free surfaces. Annual stromatolite laminae reflect seasonal changes in temperature and light supply. The stable carbon isotope composition of the laminae is not affected by photosynthesis-induced microgradients, but mirrors that of the bulk water body only reflecting climate fluctuations. Tufa stromatolites with their cyanobacterial-photosynthesis-related calcification fabrics form an analogue to porostromate cyanobacterial stromatolites in fossil settings high in CaCO3 mineral supersaturation but comparatively low in dissolved inorganic carbon. Here, the sum-effect of heterotrophic exopolymer-degradation and secondary Ca2+-release rather decreases calcite saturation, contrary to settings high in dissolved inorganic carbon such as soda lakes.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 206: 247-269.
    Publication Date: 2003-01-01
    Description: Dronning Maud Land contains a fragment of an Archaean craton covered by sedimentary and magmatic rocks of Mesoproterozoic age, surrounded by a Late Mesoproterozoic metamorphic belt. Tectonothermal events at the end of the Mesoproterozoic and in Late Neoproterozoic-Cambrian times (Pan-African) have been proved within the metamorphic belt. In western Dronning Maud Land a juvenile Mesoproterozoic basement was accreted to the craton at c. 1.1 Ga. Mesoproterozoic rocks were also detected by zircon SHRIMP dating of gneisses in central Dronning Maud Land, followed by a long hiatus for which geochronological data are lacking, an amphibolite to granulite facies metamorphism and syntectonic granitoid emplacement of Pan-African age have been dated. During this orogeny older structures were completely overprinted in a sinistral tranpressive deformation regime, leading to the mainly coast-parallel tectonic structures of the East Antarctic Orogen. Putting Antarctica back in its Gondwana position, the East Antarctic Orogen continues northward in East Africa as the East African Orogen, whereas a connection to the marginal Ross Orogen at the Pacific margin of East Antarctica is suggested along the Shackleton Range. The East Antarctic-East African Orogen resulted from closure of the Mozambique Ocean and collision of West and East Gondwana, i.e. western Dronning Maud Land was part of West Gondwana. During this collision the lithospheric mantle probably delaminated, allowing the asthenosphere to underplate the continental crust and producing heat for the voluminous, typically anhydrous, Pan-African granitoids of central Dronning Maud Land.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...